

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Proteomic Analysis Of Bacteriophage Pr – 6 UGSHA.

Natalya A. Feoktistova¹, Dmitriy A. Vasilyev¹, Andrey V. Mastilenko¹, Ekaterina V. Suldina¹, Sergie N. Zolotukhin¹, Alexander L. Toigildin¹, Irina A. Toigildina¹, Alexander V. Dozorov¹, Vitality A. Isaichev¹, Alexander A. Nafeev¹, Igor L. Obuhov², Boris I. Shmorgun³.

¹Ulyanovsk State Agricultural University named after P.A. Stolypin, Ulyanovsk (Russian Federation). ²All-Russian Research Institute of Veterinary sanitary, Hygiene and Ecology, Moskau (Russian Federation). ³Federal State Budgetary Institution «The Russian State Center of Quality and Standardization Medicines for Animals and Feed» Moskau (Russian Federation).

ABSTRACT

In the article the results of study of proteomic analysis of bacteriophage of proteus Pr - 6 UGSHA (study of amino acid sequence of proteins, their qualitative and quantitative composition, isoelectric point of proteins, molecular number) that was detached and selected in 2017 from the objects of ambient in terms of specificity and lytic activity. In experiments recourses of system SnapGene Viewer v.4.1.7 and ExPasy (https://web.expasy.org) and method of vertical electrophoresis in PAGE were used. Analysis of profilogram was carried with the use of software GelAnalyzer 2010. As the result of undertaken studies data of poteomic analysis is compared on the basis of conducted sequence and electrophoresis in PAGE . It is established that qualitative composition of proteins of bacteriophage Pr - 6 UGSHA matches such at annotated analogues, has clear homologies of nucleotide and amino acid sets. During the analysis of proteome of bacteriophage Pr - 6UGSHA and, consequently, data of sequencing its nucleonic acid 50 proteins with molecular numbers from 5,5 to 140 kDa. During separation of detached and concentrated proteins of phage in PAGE by vertical electrophoresis method for Proteusphage Pr - 6 UGSHA 3 proteins were determined (67 kDa, 77 kDa and 94 kDa). Obtained data about genome of bacteriophage Pr - 6 UGSHA, specific for bacteria Proteus, inducing zoogenous infections, draws us nearer to the creation of phage treatment medications of new- generation, adapted for parenteral administration, having established parameters of pharmacokinetics and complainting with modern standards of biological safety.

Keywords: Proteus, bacteriophage, proteomic analysis, sequencing, protein, molecular number

*Corresponding author

10(2)

INTRODUCTION

Based on literature data it can be confirmed that in small intestine of young livestock animals and poultry in farms, unfortunate by intestinal diseases, bacteria of *Proteus* species are registered around 20-50 % cases [1-2].

Development of ecologically clear and effective therapeutic agents for diagnosis, treatment and prophylaxis of bacterial infections, induced by bacteria of *Proteus*, includes search and selection of specific bacteriophages, upon which new biopreparations can be constructed [3-6].

Interest to bacteriophage study is supported, besides fundamental aspects, by possibility of their appliance as medicine. In last 20 years quick growth of number and variety of strains of pathogenic microorganisms, stable to small molecule antibiotics, stimulated search of therapeutic alternatives and bacterial infections control. For maximum effective and scientifically grounded appliance of bacteriophages in medicine, veterinary science, agriculture and aquacultures their detailed study and systematization on genome level is necessary, and also high degree of purification of applied phage preparations. Analogues research in field of proteome study of bacteria and specific to them bacteriophages are shown in range of publications of foreign scientists and Russian scientists. [7-14]

Research aim is conducting of proteomic analysis of bacteriophage proteus Pr - 6 UGSHA (study of amino acid sequence of proteins, their qualitative and quantitative compositions, isoelectric point of proteins, molecular number).

MATERIALS AND METHODS

Research object is bacteriophage Pr - 6 UGSHA, detached in 2017 by a group of authors from the objects of ambient, having following characteristics- diameter of PFU- 0,5±0,1 mm, titer by Gratia - 1,3±0,2x10⁹ BFU/ml, titer by Appelmann – 10⁻⁸, stable to influence of trichloromethane during 15 minute and specific for cultures *Proteus mirabilis* and *Proteus vulgaris*, detached from pathological material and objects of sanitary inspection of animal and poultry rooms from farming, unfortunate by intestinal diseases in 2016-2017 rr. [15-17].

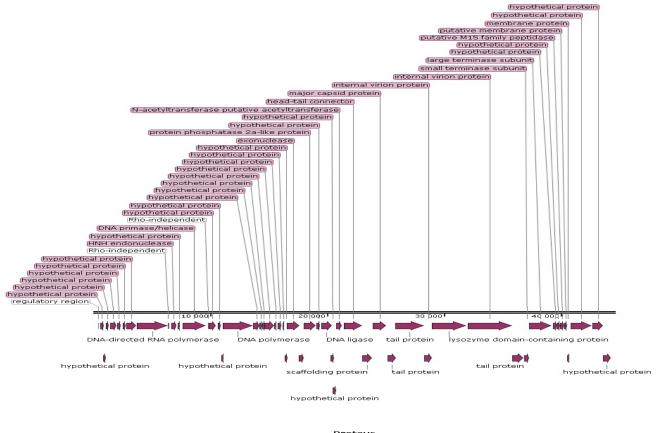
For proteic analysis we used recourses of the system SnapGene Viewer v.4.1.7 and ExPasy (<u>https://web.expasy.org</u>) and analysis of bacteriophage Pr - 6 yrcxA, was carried, active in relation to bacteriophage *Proteus* and physical and chemical characteristics of each proteins in their composition were given

For analysis of protein profilogram of detached bacteriophage Pr - 6 VFCXA we used method of vertical electrophoresis in PAGE. Analysis of profilograms was carried with the use of software GelAnalyzer 2010.

As a first step it was necessary to obtain maximum possible bacteriophage weight for sufficient visual detection after electrophoresis. Bacterial weight was cultivated during 24 hours on culture fluid. Then detached bacteriophages were spiked in titer 10^9 BFU/ml at a rate of 1,0 ml to 10 ml of bacterial culture according to studied species. It was cultivated during 48 hours at 37 °C under aerobic conditions and adequate moisture. After that part of aliquote of culture *Pr. vulgaris 28* [17] with bacteriophage *Pr* – 6 UGSHA was studied by agar-layer method by Gratia for confirmation of phage titers and a part was used for obtainment of bacteriophage proteins.

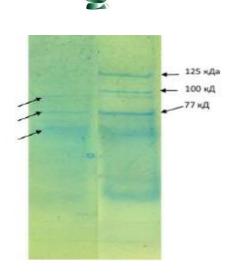
For detachment and concentration of bacteriophage proteins Pr - 6 UGSHA the culture liquid was centrifuged for 20 min at 3000r/min (Centrifuge type MPW-310, Poland). Supernatant liquid, containing bacteriophages, was carried into clean glass- tube at a rate of 5,0 ml and it was exposed to ultrasonic disintegration at the mode of 10 micron with triple approaches by 60 seconds. Then 5,0 ml of sole solution of ammonium sulphate was carried. All the manipulations were conducted in cold. Sole solution was incubated during 1 hour at 4-8 °C, and then proteins were precipitated at 10000 r/min during 30 minutes (Centrifuge type MPW-310, Poland). Supernatant liquid was removed under visual control of presence of sediment.

Sediment was diffused in 100 mql of buffer for electrophoresis. Large conglomerates of insoluble fraction of proteins and detritus were sedimented at 3000 r/min during 1 minute (Centrifuge type MPW-310, Poland).

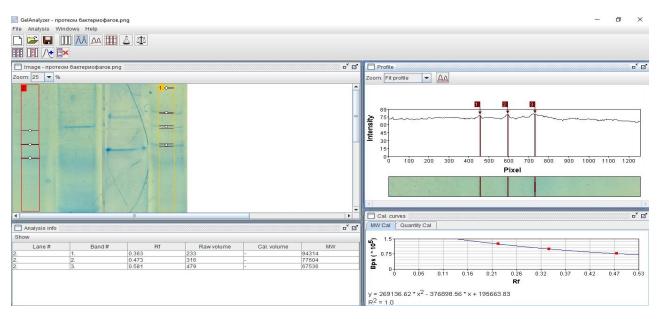

Detached and concentrated in such a way proteins were used for conducting of vertical electrophoresis in PAGE.

Mode of electrophoresis and concentration of PAGE: 200 V, 60 MA, 30 minutes, 4-20% PAGE, trisglycine buffer with pH-8,6.

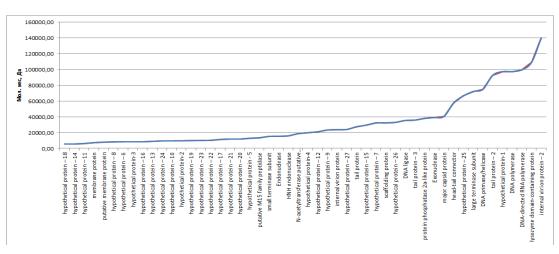
RESULTS AND DISCUSSION


As a result of conducted research we compared data of proteomic analysis on the basis of conducted sequence ane electrophoresis in PAGE. In picture 1 profilogram of proteomes of detached proteus bacteriophage is shown during their preparation in PAGE. For Proteusphage 3 proteins were discovered (67 kDa, 77 kDa and 94 kDa) (pic. 2-3).

During the analysis of proteome of bacteriophage *Proteus* according to data of sequencing of its nucleic acid 50 proteins with molecular number from 5,5 to 140 kDa were discovered. Qualitative proteomic composition of Proteusphage is shown in tables 1-2 and pictures 4-6.



Proteus 44 580 bp


Pic. 1 – Map of linear DNA of bacteriophage Proteusphage Pr - 6 UGSHA with decoding of coding regions of genome

Pic. 2 – Profilogram of proteus of bacteriophage Proteusphage Pr – 6 UGSHA and its comparison with marker

Pic. 4 – Distribution graph of protein composition Proteusphage Pr – 6 UGSHA by molecular number

March - April

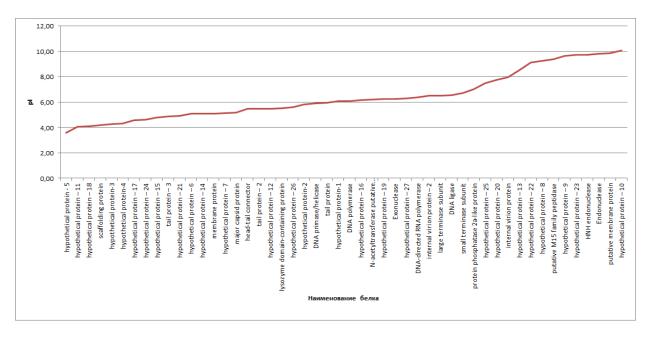
Table 1: Location of protein in genome Proteusphage

ires: 54 total Feature	Locat	ion	Size		₽	Туре	
source	1 403	44 580 422	44 580 bp		н	source	
regulatory region			20 bp		⊢ →	regulatory	
hypothetical protein	607	882	276 bp		-	CDS	hypothetical prote
hypothetical protein	845	1096	252 bp			CDS	hypothetical prot
hypothetical protein	1096	1305	210 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	1463	1963	501 bp	_		CDS	hypothetical prot
hypothetical protein	2028	2357	330 bp		→	CDS	hypothetical prot
hypothetical protein	2536	2754	219 bp		→	CDS	hypothetical prot
hypothetical protein	2825	3670	846 bp		-	CDS	hypothetical prot
DNA-directed RNA polymerase	3744	6371	2628 bp		<u>→</u>	CDS	
Rho-independent	6383	6424	42 bp		Н	regulatory	
HNH endonuclease	6674	7087	414 bp		→	CDS	HNH endonucleas
hypothetical protein	7219	7437	219 bp		→	CDS	hypothetical prot
DNA primase/helicase	7647	9635	1989 bp		→	CDS	
Rho-independent	9815	9858	44 bp		н	regulatory	
hypothetical protein	9883		612 bp		→	CDS	hypothetical prot
hypothetical protein	10 636		252 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	10 951		165 bp		\rightarrow	CDS	hypothetical prot
DNA polymerase	11 099		2553 bp		\rightarrow	CDS	DNA polymerase
hypothetical protein	13 690		546 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	14 238		231 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	14 487		156 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	14 655		807 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	15 465		225 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	15 792		324 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	16 187		153 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	16 406		246 bp		\rightarrow	CDS	hypothetical prot
exonuclease	16 597		1035 bp		\rightarrow	CDS	exonuclease
endonuclease	17 616		411 bp		\rightarrow	CDS	endonuclease
protein phosphatase 2a-like p	18 019		1008 bp		→	CDS	
hypothetical protein	19 097		306 bp		\rightarrow	CDS	hypothetical prot
DNA ligase	19 497		942 bp		\rightarrow	CDS	DNA ligase
hypothetical protein	20 314		312 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	20 498		264 bp		\rightarrow	CDS	hypothetical prot
N-acetyltransferase putative	20 761		495 bp		\rightarrow	CDS	
head-tail connector	21 436		1551 bp		\rightarrow	CDS	head-tail connect
scaffolding protein	22 986		882 bp		\rightarrow	CDS	scaffolding protei
major capsid protein	23 941		1113 bp		\rightarrow	CDS	
tail protein	25 182		729 bp		\rightarrow	CDS	tail protein
tail protein	25 852	28 317	2466 bp		\rightarrow	CDS	tail protein
internal virion protein	28 317	28 994	678 bp		\rightarrow	CDS	
lysozyme domain-containing p	29 003	31 954	2952 bp		\rightarrow	CDS	
internal virion protein	32 022	35 843	3822 bp		\rightarrow	CDS	
tail protein	35 843	36 802	960 bp		\rightarrow	CDS	tail protein
small terminase subunit	36 870	37 292	423 bp		\rightarrow	CDS	
large terminase subunit	37 292	39 190	1899 bp		\rightarrow	CDS	
hypothetical protein	39 357	39 632	276 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	39 644	39 913	270 bp		\rightarrow	CDS	hypothetical prot
putative M15 family peptidase	39 923	40 276	354 bp		\rightarrow	CDS	
putative membrane protein	40 303	40 527	225 bp		\rightarrow	CDS	
membrane protein	40 520	40 717	198 bp		\rightarrow	CDS	membrane protei
hypothetical protein	40 831		1845 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	42 734		873 bp		\rightarrow	CDS	hypothetical prot
hypothetical protein	43 606		645 bp		-	CDS	hypothetical prote

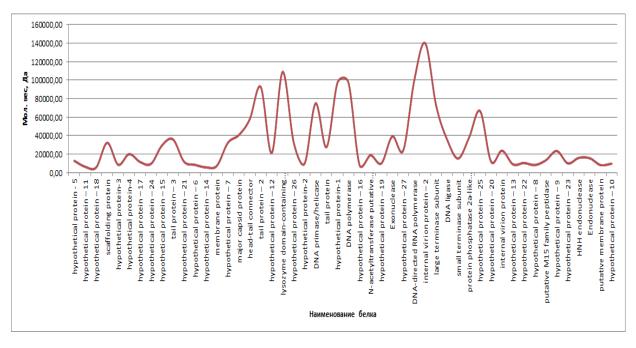
Table 2: Proteomic composition of bacteriophage Pr – 6 UGSHA

Item	molec. numb, Da	рі
DNA ligase	35410	6,57
DNA polymerase	97367	6,09
DNA primase/helicase	74770	5,92
DNA-directed RNA polymerase	99625	6,38
Endonuclease	15439	9,82
Exonuclease	39003	6,27
head-tail connector	57724	5,48
HNH endonuclease	15818	9,74
hypothetical protein – 1	97367	6,09

March – April


2019

RJPBCS



hypothetical protein – 10	9551	10,06
hypothetical protein – 11	6135	4,04
hypothetical protein – 12	20960	5,49
hypothetical protein – 13	8786	8,54
hypothetical protein – 14	5587	5,11
hypothetical protein – 15	29386	4,79
hypothetical protein – 16	8410	6,16
hypothetical protein – 17	11408	4,57
hypothetical protein – 18	5538	4,12
hypothetical protein – 19	9808	6,27
hypothetical protein – 2	9677	5,81
hypothetical protein – 20	11778	7,74
hypothetical protein – 21	11748	4,94
hypothetical protein – 22	10275	9,15
hypothetical protein – 23	9892	9,74
hypothetical protein – 24	9419	4,61
hypothetical protein – 25	66538	7,51
hypothetical protein – 26	32842	5,60
hypothetical protein – 27	23953	6,28
hypothetical protein – 3	8340	4,28
hypothetical protein – 4	19922	4,32
hypothetical protein – 5	12585	3,59
hypothetical protein – 6	8298	5,09
hypothetical protein – 7	32074	5,12
hypothetical protein – 8	8060	9,27
hypothetical protein – 9	23289	9,65
internal virion protein	23624	7,97
internal virion protein – 2	139867	6,49
large terminase subunit	72173	6,50
lysozyme domain-containing protein	108926	5,52
major capsid protein	40443	5,18
membrane protein	7245	5,11
N-acetyltransferase putative acetyltransferase	18741	6,20
protein phosphatase 2a-like protein	37886	7,04
putative M15 family peptidase	13215	9,39
putative membrane protein	7982	9,86
scaffolding protein	32160	4,17
small terminase subunit	15141	6,72
tail protein	27466	5,94
tail protein – 2	92577	5,48
tail protein – 3	35803	4,87

Pic. 5 – Distribution graph of protein composition of Proteusphage Pr – 6 UGSHA by isoelectric point (pl)

Pic. 6 – Distribution graph of protein composition of Proteusphage *Pr* – 6 UGSHA by molecular number depending on pl

CONCLUSIONS

As the result of conducted research sequencing data of genome of bacteriophage Pr - 6 UGSHA, obtained from objects of ambient and selected (by specific biological properties: lytic activity, specificity and spectrum of lytic action) and map of linear DNA was made with interpretation of coding region of genome. Data of nucleotide sequences of proteic bacteriophage, received at its sequencing, allowed us to carry comparative analysis of their genomes (table 1). We established that qualitative composition of proteins of bacteriophage Pr - 6 UGSHA corresponds such at annotated analogues , has clear homologies of nucleotide and amino acid sets. In the structure of proteins regularity was found, specific to bacteriophages- presence of structural and nonstructural components. Gene products were determined, having no clear determined functional characteristics-hypothetical proteins which have analogues in annotated genomes of bacteriophage, active towards bacteria of *Proteus* species. However study of biological properties of bacteriophages includes

2019

RJPBCS

10(2)

Page No. 1586

also their proteic analysis. During the analysis of proteome of bacteria Pr - 6 UGSHA – data of sequencing of its nucleic acid, 50 proteins with molecular number from 5,5 to 140 kDa (pic. 4-6). During the separation of detached and concentrated proteins of phage in PAGE by method of vertical electrophoresis for Proteusphage 3 proteins were discovered. (67 kDa, 77 kDa and 94 kDa) (pic. 2-3). Received data about bacteriophage genome Pr - 6 UGSHA, specific for bacteria *Proteus* species, inducing zoonotic infection, moves us nearer to the creation of phage therapeutic medication of new generation, adaptated for parenteral appending, having established parameters of pharmacokinetics and conforming to up-to-date biological safety.

The research is conducted with the support of Russian Foundation for Fundamental research, project «Genomics and biology of candidate bacteriophage for enterobacterial infection therapy in veterinary medicine» №16-44-732038.

REFERENCES

- [1] Khaptseva OJ, Khaptsev ZY, Faust YA, Larionova OS, Sherbakov AA. About effect of acidulent on calves' gastrointestinal microflora. *Scientific life*, 2015; 2:103-109.
- [2] Shakhov AG, Sashnina LY, Fedosov DV, Yerina TY, Alekhin Y.N. Formation of intestinal microbiocenosis at calves with digotrophy syndrome in preweaning period. *Agricultural biology*, 2014; 2:105-111.
- [3] Nifontova VV, Chugunova OY. Detachment of bacteriophage and their appliance in veterinary. *Vestnik* of *Perm Scientific Centre*, 2015; 2: 54-59.
- [4] Chugunova OY, Tatarnikova NA. Study of proteic phage properties. *Perm agricultural vestnik*, 2016; 3(15): 108-122.
- [5] Zolotukhin SN. Little studied enterobacterial and their role in animal pathology. Ulyanovsk: Copiring, 2004. P.29–37 (130p).
- [6] Sboychako VB, Zakharenko SM, Finogeev YP, Krumgolts VF. Epidemiology, clinic and laboratorydiagnosis of bacterial and micosal disease. *Treatment and prophylaxis*, 2012; 3: 77-81.
- [7] Miroshnikov KA. Genomics and proteomics of lytic bacteriophages *Pseudomonas aeruginosa:* abstract. thesis. ...PhD in Chemistry: 03.01.04, 03.01.06 /Miroshnikov Konstantin Anatolyevich. Moscow, 2013. P.5 (169p).
- [8] Krylov SV, Pleteneva YA, Burkaltseva MV, Shaburova OV, Miroshnikov KA, Lavin R, Kornelissen A, Krylov VN. Genome instability of phage EL *Pseudomonas aeruginosa* species: study of mutants, showing virulence. *Genetics*, 2011; 47 (2):183-189.
- [9] Sycheva LV, Shneider MM, Sykilinda NN, Ivanova MA, Miroshnikov KA, Leiman PG. Crystal structure and location of gpl31 in the bacteriophage phiKZ virion. *Virology*, 2012; V. 434: 257-265.
- [10] Jungblut PR, Hecker M. Proteomics of microbial pathogens. *Proteomics*, 2004; V. 4 (10): 2829–2830.
- [11] Vandamme P, Vancanneyt M., Belkum van A. et al. Polyphasic analysis of strains of the genus Capnocytophaga and Centers for Disease Control group DF-3. Int. J. Syst. Bacteriol, 1996; V. 46 (3): 782-791.
- [12] Cash P. Proteomics in the study of the molecular taxonomy and epidemiology of bacterial pathogens. *Electrophoresis,* 2009; 1: 133-141.
- [13] Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in *Acinetobacter baumannii*. *Front. Microbiol*, 2014; 5 (512): 1-7.
- [14] S. Ekström, P. Onnerfjord, J. Nilsson et al. Integrated microanalytical technology enabling rapid and automated protein identification. *Anal. Chem*, 2000; 72 (2): 286-293.
- [15] Feoktistova NA, Vasilyev DA, Zolotukhin SN. Proteus bacteriophages: study of some biological properties. *Vestnik of Ulyanovsk State Agricultural Academy*, 2017; 4(40): 75-80.
- [16] Feoktistova NA, Vasilyev DA, Zolotukhin SN. Study of biological properties of bacteriophages *Proteus / Vestnik of Ulyanovsk State Agricultural Academy*, 2017; 3(39): 99-105.
- [17] Vasilyev DA, Feoktistova NA, Zolotukhin SN. Detachment and study of biological properties of bacteria *Proteus* species. *Vestnik of Ulyanovsk State Agricultural Academy*, 2017; 2 (38): 70-76.