

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

Molecular-genetic Characteristics of Strains of Proteus Bacteriophages.

Natalya A Feoktistova^{1*}, Dmitriy A Vasilyev¹, Andrey V Mastilenko¹, Ekaterina V Suldina¹, Sergie N Zolotukhin¹, Alexander L Toigildin¹, Irina A Toigildina¹, Alexander V Dozorov¹, Vitality A Isaichev¹, and Igor L Obuhov².

¹Ulyanovsk State Agricultural University named after P.A. Stolypin, Ulyanovsk (Russian Federation) ²All-Russian Research Institute of Veterinary sanitary, Hygiene and Ecology, Moskau (Russian Federation)

ABSTRACT

In the article molecular genetic characteristic of sequeneed bacteriophages Pr - 6 VFCXA is presented. The map of linear DNA with decipher of coding sequence of genome is made. According to known analogues the expression products of their genes were identified. The scheme of molecular genetic indication (with the use of PCR) of autonomous genetic element (pathogenicity islands) in bacteriophages genomes was developed. Genomes which are active with relation to *Proteus ssp.* and supposed for appliance as therapeutic agents for treatment of enterobacterial infections, caused by above mentioned bacteria strains in veterinary medicine. According to the results of experimental research the indication of specific gene units *RelE of* culture *Proteus spp.* with developed system of oligonucleotide in genome of Proteus bacteriophage Pr - 6VFCXA gene locus of pathogenicity wasn't determined. The data received allows to recommend bacteriophage Pr - 6 VFCXA, specific to bacteria *Proteus mirabilis and Proteus vulgaris species*, for engineering therapeutic biological product with the aim to prophylaxis and treatment of gastrointestinal diseases of agricultural rearers and poultry.

Keywords: Proteus, bacteriophages, genome, sequenation, primers, therapeutic agents.

*Corresponding author

9(4)

INTRODUCTION

The analysis of literature references indicates the fact that the unit of *Proteus* bacteria in small bowels of agricultural rearers and poultry in farmings, unfortunate in gastrointestinal diseases, can reach 50% [1-3]. Low percentage of lethality leads to high economic expenditures, as the decreasing of body weight of recovered animals and poultry and decreasing of immunological status in prospect leads to lack of growth per 1 food unit or 1 ruble of investments [4].

The search of non-polluting and effective therapeutic agents for treatment and prophylaxis of bacterial infections cannot exclude the appliance of bioproducts on the basis of specific bacteriophages [5-7]. In response to the features of its biology, bacteriophages can be powerful agents of lateral gene transfer from bacteria to bacteria. Bacteriophages, meant for the aim of phage therapy and phagoprophylaxis of infectious diseases, must be researched by methods of genomics for determination of their aptitude to transfer of bacteria genes [8]. The major routes of transfer and expression of «virulence genes» by bacteriophages are either lysogenic conversion (in case where genome of temperate phage contains unintended genes) or phage transduction. Genes, which can contain bacteriophages and the emerging of which in genomes of infected bacteria can cause unintended effect (for instance, high virulence). They can be divided into several groups according to their products: 1) genes of extracellular toxins; 2) genes, the products of which take part in affiction and oesizing of surfaces by bacteria; 3) gene enzymes, changing serotype of bacteria; 4) gene of proteins, helping to infection of bacteria into tissues. Naturally the presence of such genes in bacteriophages for the aims of therapy and prophylaxis of bacterial diseases is absolutely unacceptable. Apart the absence of virulent genes, phages must be absolutely lytic (virulent) and not cause the transduction of host DNA [9-12].

The research aim is conducting of molecular genetic research of *Proteus* bacteriophages for confirmation of originality, virulent nature and absence of pathogenicity locus

MATERIALS AND METHODS

Out of 94 tests from farmings, unfortunate in gastrointestinal diseases, bacteriophages, specific to *Proteus* bacteria, were detached. It was established that these bacteriophages were characterized by cytotoxic efficiency within the range from $4,2\pm0,2\times10^{6}$ to $1,9\pm0,1\times10^{9}$ BFU/ml (by A. Gratia method) and from 10^{-5} to 10^{-8} (by Appelman's method), were specific within species, they had cross lysis within *Proteus vulgaris* and *Proteus mirabilis* species. Cumulative percent of lysis of 8 bacteriophages for 42 cultures was 100 % [13-14].

The analysis of studied biological properties of bacteriophages *Proteus* allowed us to choose for further research , aimed to study of molecular genetic characteristic, including the determination of phage genome size, bacteriophages Pr - 6 VFCXA. The research was aimed to determine the percentage of its identity with taxonomically closest bacteriophages, to control the absence in DNA structure genes, encoding toxins, intergases, repressors of transcription and other undesirable locuses [15].

The whole genome sequencing of DNA of second generation bacteriophages was used. to obtain full based sequence (Ion Torrent, Thermo Fisher Scientific, the USA). Bacteriophage strains were sequences three times. The data of each round of sequencing were analysed by bioinformatics methods. Filtration of quality of reads allowed to collect genome of bacteriophage ith high validation.

In the research the libraries of data basis GeneBank (the USA), EMBL (European Molecular biological Library), DDBJ (DNA data bank of Japan) were used.

For PCR-sheets optimization, in reaction with *Proteus spp.* strains, electrophoretic method of detection of amplification products was used.

RESULTS AND DISCUSSION

In picture 1 detached genome was compared with known DNA of bacteriophages, deposited in GenBank NCBI, for determination of coding genome areas.

As the result of conducted research the map of linear DNA of detached and selected by us earlier bacteriophage Pr - 6 YFCXA was made. According to known analogues expression products of their genes were determined. Qualitative composition of proteins of bacteriophage matches such at annotated analogues, has distinct homologies of nucleotide and amino-acid sets. In protein structure regularity is observed, specific to given viral particles- presence of structural and nonstructural components. Also gene products were determined , not having distinct clear functional characteristics, so- termed hypothetical proteins, having analogues in annotated genomes of bacteriophages, active according to studied bacteria species. In table 1 bioinformatic analysis of conformality of known genes with data of given sequencing of bacteriophage is presented. On the basis of bioinformatic analysis of data of sequence the absence of pathogenicity locuses was proved. Otherwise the process of sequencing is rather expensive and complex, so in the given work we set ourselves the task to show the possibility of usage of PCR method to prove the absence of pathogenetic locuses in bacteriophage genome.

The next stage of research was system development of molecular-genetic indication(using PCR, polymerase chain reaction) of autonomous genetic element (pathogenicity islands) active according to *Proteus ssp.* and supposed for the appliance as therapeutic agents for treatment of enterobacterial infections, caused by above mentioned bacteria strains in veterinary medicine. On the first stage in the library of data basis GeneBank (the USA), EMBL (European Molecular biological Library), DDBJ (DNA data bank of Japan) the uniqueness of gene-candidate was determined and the fragment, coding *toxin RelE* was chosen.

Pic 1: The map of linear DNA of *Proteus* with a breakdown of coding genome areas.

Table 1: Bioinformatic analysis of compossibility of known genes with the data of sequencing of Proteus bacteriophage

After the analysis in libraries of data bases GeneBank (the USA), EMBL (European Molecular biological Library), DDBJ (DNA data bank of Japan)) of nucleic acid sequences of all above mentioned genes, they were scanned by the Blast system of data base GeneBank (the USA) on coincidence with sequence with acid sequences of DNA of known microorganisms. It was established that these genetic sequences are unique for *Proteus* phage toxin RelE and don't have concordance with other microorganisms.

After the choise of specific gene- candidate for molecular – genetic identification «pathogenic island», the agent of which can be bacteriophage, active towards *Proteus ssp.*, the most conservative parts of chosen targets by their comparison in different strains of *Proteus* phage in data base GeneBank.

On these conserved parts by application Primer BLAST of this data base in on-line mode primers were placed, which satisfy some conditions, determine by us; primer length must be 18–24 of nucleotide pair, , temperature of primer melting must be 60–70 °C, size of flanked primer of genome part must be not less than 100 and not mor ethan 1000 base pair.

July-August 2018 RJPBCS 9(4) Page No. 202

Sequence: Proteus.gb (Linear / 44 580 bp) Features: 54 visible, 54 total

	Feature	Location	Size		≠	Туре				
1	source	1 44 580	44 580 bp		н	source				
1	regulatory region	403 422	20 bp		н	regulatory				
1	hypothetical protein	607 882	276 bp		\rightarrow	CDS				
1	hypothetical protein	845 1096	252 bp		\rightarrow	CDS				
1	hypothetical protein	1096 1305	210 bp		\rightarrow	CDS				
1	hypothetical protein	1463 1963	501 bp		\rightarrow	CDS				
1	hypothetical protein	2028 2357	330 bp		\rightarrow	CDS				
1	hypothetical protein	2536 2754	219 bp		\rightarrow	CDS				
1	hypothetical protein	2825 3670	846 bp		\rightarrow	CDS				
1	DNA-directed RNA polyme	3744 6371	2628 bp		\rightarrow	CDS				
1	Rho-independent	6383 6424	42 bp		п	regulatory				
1	HNH endonuclease	6674 7087	414 bp		\rightarrow	CDS HNH endonucle				
1	hypothetical protein	7219 7437	219 bp		\rightarrow	CDS				
1	DNA primase/helicase	7647 9635	1989 bp		\rightarrow	CDS				
1	Rho-independent	9815 9858	44 bp		н	regulatory				
1	hypothetical protein	9883 10 494	612 bp		\rightarrow	CDS				
1	hypothetical protein	10 636 10 887	252 bp		\rightarrow	CDS				
1	hypothetical protein	10 951 11 115	165 bp		\rightarrow	CDS				
1	DNA polymerase	11 099 13 651	2553 bp		\rightarrow	CDS DNA polymerase				
1	hypothetical protein	13 690 14 235	546 bp		\rightarrow	CDS				
1	hypothetical protein	14 238 14 468	231 bp		\rightarrow	CDS				
1	hypothetical protein	14 487 14 642	156 bp		\rightarrow	CDS				
1	hypothetical protein	14 655 15 461	807 bp		\rightarrow	CDS				
1	hypothetical protein	15 465 15 689	225 bp		\rightarrow	CDS				
1	hypothetical protein	15 792 16 115	324 bp		\rightarrow	CDS				
1	hypothetical protein	16 187 16 339	153 bp		\rightarrow	CDS				
1	hypothetical protein	16 406 16 651	246 bp		\rightarrow	CDS				
1	exonuclease	16 597 17 631	1035 bp		\rightarrow	CDS exonuclease				
1	endonuclease	17 616 18 026	411 bp		\rightarrow	CDS endonuclease				
1	protein phosphatase 2a-lik	18 019 19 026	1008 bp		\rightarrow	CDS				
1	hypothetical protein	19 097 19 402	306 bp		\rightarrow	CDS				
1	DNA ligase	19 497 20 438	942 bp		\rightarrow	CDS DNA ligase				
1	hypothetical protein	20 314 20 625	312 bp		\rightarrow	CDS				
1	hypothetical protein	20 498 20 761	264 bp		\rightarrow	CDS				
1	N-acetyltransferase putati	20 761 21 255	495 bp		\rightarrow	CDS				
1	head-tail connector	21 436 22 986	1551 bp		\rightarrow	CDS				
1	scaffolding protein	22 986 23 867	882 bp		\rightarrow	CDS				
1	major capsid protein	23 941 25 053	1113 bp		\rightarrow	CDS				
1	tail protein	25 182 25 910	729 bp		\rightarrow	CDS tail protein				
1	tail protein	25 852 28 317	2466 bp		\rightarrow	CDS tail protein				
1	internal virion protein	28 317 28 994	678 bp		-+	CDS				
1	lysozyme domain-containi	29 003 31 954	2952 bp		\rightarrow	CDS				
1	internal virion protein	32 022 35 843	3822 bp		-	CDS				
1	tail protein	35 843 36 802	960 bp		\rightarrow	CDS tail protein				
1	small terminase subunit	36 870 37 292	423 bp		\rightarrow	CDS				
1	large terminase subunit	37 292 39 190	1899 bp		-	CDS				
1	hypothetical protein	39 357 39 632	276 bp		\rightarrow	CDS				
1	hypothetical protein	39 644 39 913	270 bp		-	CDS				
1	putative M15 family peptid	39 923 40 276	354 bp		\rightarrow	CDS				
1	putative membrane protein	40 303 40 527	225 bp		-+	CDS				
1	membrane protein	40 520 40 717	198 bp		\rightarrow	CDS membrane prot				
1	hypothetical protein	40 831 42 675	1845 bp		\rightarrow	CDS				
1	hypothetical protein	42 734 43 606	873 bp		-	CDS				
Print	Printed from SnapGene® Viewer: Hos 19, 2017 22:18 Page 1									

After determination of primers, they were alined by Gene Runner Version 3.05 programme, dimers were determined, during their non complementary fixation with themselves and in pairs. In finished variant of primers, theoretical specificity and fragments of amplifiable area are shown in picture 2 and in table 2.

July-August

2018

9(4)

For optimization of PCR-record, in reactions with *Proteus spp.*, detached from the sample of pathological material and poultry houses and objects of sanitary inspection of livestock and poultry houses from farmings, unfortunate in gastrointestinal diseases, electrophoretic method of detection of amplified products was used. The results of experiment research of indication of specific fragment of RelE culture *Proteus spp.* with developed systems of oligonucleotide are presented in picture 3.

NC_010554.1 • F	ind:	× ¢	□ □\$ Q, - 592 998	1593 K	1593.628	1593.040	1593,868	593.080	593.166	593.128	1593 148	1593 168	1593 188	1593,288	1593.228	593,248	X Tools •	593.288	ks @ 1993.:
								PHI_RS0272											
HF_012367	6071			10-3010	:30/0571								4-3123070371			10.012	2670601		
er pairs for job	hY9alq7so0SEeqZ_	zx-CTdEEk3	8_874hi_Q													HP JOLZ	3676501	·	
		Priner 1		<u>:</u>															
		Priner 3		÷—	_	-		-	-										
		Frankr 4		-								· · · ·							
1992,990 [992 210554.1: 59345934 (493 tailed prin	1920 192,940 (hp) mer repor	1592,968	592,998	593 K	593,020	593,040	593,068	593,080	593,100	593,120	593,148	593,168	593,388	593,200	593,228	593,240	593,268	593,288	ks shov
e 592,909 592 010554.1: 533K593K (403 tailed prir Primer pair 1	ner repor	572.960 <u>ts</u>	592,968	593 K	593,020	593,040	593,060	593,000	593,100	593,120	593,140	593,168	593,188	593,200	593,220	593,248	595,268	593,289	p3: ks show
e 1992.980 1992 (19934.11.9994.1.9994.(499 tailed prin Primer pair 1 Forward primer	SEE \$72,940 bp) mer repor Sequence (5'-> AGCAATCAAA	572.960	[592,998	593 K	(593,020 Te	pplate stran		593,000 Length 25	593,100 Start 592976	593.220 Stop 593000	593,148 Tm 59.05	GC% 36.00	593.388 Self comple 5.00	mentarity	593.228	593,246 Self 3' con 1.00	jss.jse	pro.200	ks shown
e 1992.990 1992 (200554.11 593K.4593K (433 tailed print Primer pair 1 Forward primer Reverse primer Product length	See 592,949 pp) mer report Sequence (5'-> A0CAAATCAAA ToorTTTOGAT 215	572.988 55 57 57 57 57 57 57 57 57 57 57 57 57	TACAGA ACT	_ 593 K	(593,020 Te Pho Mit	nplate stran us		593,080 Length 25 22	593.000 Start 592976 593190	50000 593000 593169	1993,348 Tm 59,05 58,38	GC% 36.00 40.91	593.800 Self comple 5.00 4.00	mentarity	593,228	593,240 Self 3' con 1.00 1.00	project	p99.299	p93 ks showr
e 1992,990 1992 2019554.11 533K.593K (403 tailed print Primer pair 1 Forward primer Product son intended Products on intended	See ps2.940 pp) mer report Sequence (5'-2 AGCAAATCAAA TOCTITTOGAT 215 sequence 15	52.360 5 37) 27AITT66CT ACGCCATAV	IACAGA ACT	B93 K	1593,020 Tel Pit Min	nplate stran IS	[593,068	593,080 Length 25 22	593.100 Start 592976 593190	593120 593000 593169	793,448 Tm 59,05 58,38	GC% 36.00 40.91	593.800 Self comple 5.00 4.00	mentarity	593.228	593240 Self 3' coi 1.00 1.00	projece	p99.200	ks shown
a [992,998 [992 200554.1: 55345534. (403 tailed prir Primer pair 1 Forward primer Torduct length Products on intended AM942759.1 Proteus	see person Sequence (5-> ACCAATCAAA TOCTITIGOAT 215 Itarget mirabilis strain HI43	37) CTATTGGCT 20, complete	ISS2.598 IACAGA ACT e genome	_ 593 K	593,828 Te Pit Mit	nplate stran IS IUS	593,060 d	553,059 Length 25 22	593.000 Start 592976 593190	593120 Stop 593000 593169	Tm 59.05 58.38	GC% 36.00 40.91	599.388 Self comple 5.00 4.00	mentarity	593.220	593240 Self 3' con 1.00 1.00	projee	ity	ks shown

Pic 2: Variants of primer systems for amplification of gene *toxin RelE* phage genome, active towards *Proteus spp*.

Table 2: Characteristics of primers to regions of the gene toxin RelE pahge genome, active towards Proteus spp

Parameter	Characteristic						
the gene toxin RelE							
Upstream primer (f) 5'-3'	AGCAAATCAAACTATTGGCTACAGA						
Downstream primer (r) 5'-3'	TGCTTTTGGATACGCCATAACT						
Predicted temperature of melting of	60,0°C						
upstream primer							
Predicted temperature of melting of	59,9°C						
downstream primer							
Theoretical specificity	Proteus mirabilis, Proteus vulgaris RelE gene						
Length of amplified region (base pair)	215						

As the result of conducted experiments in genome Pr – 6 YFCXA pathogene locuses were not found.

Pic 3: Indication of gene RelE fragments:

M – molecular weight marker, 1 – DNA of bacteriophage Pr – 6 УГСХА, specific towards *Proteus spp.*, 2 – positive control

July-August

2018

RJPBCS

9(4)

Page No. 204

As the result of conducted research sequenced data of genome bacteriophage Pr - 6 yrcxA were obtained, the map of linear DNA was made with decoding of regions of genome. In accordance with known analogues products of gene expression were determined. Qualitative composition of bacteriophage proteins matches the same in annotated analogue, it has distinct homologies of nucleotide and amino- acid set. In structure of proteins regularity is observed, typical for given viral particle- the presence of structural and nonstructural components. Also gene products were found, without distinct functional characteristics, so called hypothetical proteins, having analogues in annotated genomes of bacteriophages, active towards studied bacteria species. The system of molecular- genetic indication is developed (with the use of PCR) autonomous genetic elements (pathogenicity islands) in genoms of bacteriophages, active towards Proteus ssp. and supposed for appliance as therapeutic agent for treatment of enterobacterial infections, caused by above mentioned bacteria strains, in veterinary medicine. The uniqueness of gene-candidate is determined and fragment, encoding gene toxin RelE is chosen. Characteristic of primers to regions of the gene toxin RelE Proteus spp. phage genome, active towards: upstream primer (f) 5'-3' - AGCAAATCAAACTATTGGCTACAGA; Downstream primer (r) 5'-3' - TGCTTTTGGATACGCCATAACT; Predicted temperature of melting of upstream primer - 60,0 °C; Predicted temperature of melting of downstream primer - 59,9 °C; Theoretical specificity -Proteus mirabilis, Proteus vulgaris RelE gene; Length of amplified region (base pair) – 215.

CONCLUSIONS

As the result of experimental research of indication of specific fragment of gene *RelE* culture *Proteus spp.* with developed systems of oligonucleotide in genome of protein bacteriophage Pr - 6 YFCXA locuses of pathogenicity were not found. Data received allows to recommend bacteriophage Pr - 6 YFCXA, specific to bacteria *Proteus mirabilis* and *Proteus vulgaris* species, for construction of therapeutic biological preparation for prophylaxis and treatment of gastrointestinal diseases of agricultural rearers and poultry.

The research is conducted with the assistance of Russian Foundation for Fundamental Research, the project «Genomics and Biology of candidate bacteriophages for enterobacterial infections therapy in veterinary medicine» №16-44-732038.

REFERENCES

- [1] Kaminskaya MV, Stephanyshin OM, Nechay GI, Boretskaya NI, Gural SV, Popyk IN, Tsepko NI, Litvin VV. Comparative age dependent dynamics of establishment of microbiota of the blind end of hens and quail. *Біологія тварин*, 2014;16 (4):50-58.
- [2] Zolotukhin SN. Understudied enterobacterial and their functions in animal pathology. Ulyanovsk: Copiring, 2004, pp. 24-25.
- [3] Shmidt GO, Pleshakova GO. Biological properties of microorganisms detache large bowel of quail in the norm and in case of disbacteriosis. *Veterinary pathology*, 2012; 39 (1): 61-63.
- [4] Kurazeeva AV, Konoplyov VA, Lavrushina LA, Shulga IS. Condition of intestinal microbiocenosis of calves in case of acute intestinal disorder. *Vestnik Krasnoyarsk State Agricultural University*, 2015; 12:173-177
- [5] Zimin AA, Kochetkov FV, Kononenko SI et al. The usage of bacteriophages against colibacteriosis and campylobacteriosis in poultry farming. *Multitopic web electronic scientific journal of Kuban State Agricultural University*, 2016; 123:421-432.
- [6] Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries, 2014; 8 (2):129-136.
- [7] Krasilnikov, I.V. The role of bacteriophages in therapy of bacterial infections. Materials of the third research- to- practice conference with international participation «Bacteriophages: theoretical and practical aspects of appliance in medicine, veterinary and food industry». Moscow, 2016, pp.74-75.
- [8] Kutter E, Sulakvelidze A. Bacteriophages: biology and applications. Boca Raton, FL: CRC Press, 2005, pp. 488-500.
- [9] Borysowski J., Miedzybrozki, R, Gorsi A (Eds.) Phage Therapy: Current Research and Application. Warsaw, 2014, pp. 24-38.
- [10] Knoll BM, Mylonakis E, Knoll BM. Antibacterial bioagents based on principles of bacteriophage biology: an overview. Clin. Infect. Dis, 2014; 58 (4):528-534.
- [11] Dmitriyev AV, Kiselyov AM, Kireeva AG et al. Search of new genetic determinants *Streptococcus dysgalactiae subspecies equisimilis. Medical academic journal*, 2016; 16 (2):42-50.

July-August

2018

RJPBCS 9(4)

- [12] Gostev VV, Goncharov AI, Gracheva MA, Sidorenko SV. Spread of genes of bacteriophage immune evasion cluster complex and other factors of virulence in *Staphylococcus aureus*. *Clinical microbiology and antimicrobial chemotherapy*, 2013; 15 (4):270-278.
- [13] Feoktistova NA, Vasilyev DA, Zolotukhin SN. Detachment of bacteriophage *Proteus* and adjustment of cultivation. *Vestnik Ulyanovsk State Agricultural Academy*, 2017; 2 (38):90-106.
- [14] Feoktistova NA, Vasilyev DA, Zolotukhin SN. Study of biological properties of bacteriophages *Proteus* species. *Vestnik Ulyanovsk State Agricultural Academy*, 2017; 3 (39):99-105.
- [15] Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. *J. Biol. Chem*, 2014; 289 (2):1060-1070.

9(4)