

Research Journal of Pharmaceutical, Biological and Chemical Sciences

In-Silico Screening of Some Quinazolinone Derivatives as Dipeptidyl Peptidase-IV Inhibitors For Antihyperglycemic Activity

Amit G Nerkar¹*, Ajay M Sisode², and Sanjay D Sawant¹.

²Research Scholar, ¹Faculty of Pharmaceutical Chemistry, Department of Pharmaceutical Chemistry, Sinhgad Institute's Smt. Kashibai Navale College of Pharmacy, Kondhwa, Pune-48, M.S.

ABSTRACT

In this paper research the objective is to study *in-silico* screening, synthesis, characterize and in-vitro evaluation of some Quinazolin-e/one and its derivatives as Dipeptidyl peptidase (DPP-IV) inhibitors for antihyperglycemic activity. The present study gives a new series of Quinazolin-e/one and its derivatives as potent DPP-IV inhibitors for antihyperglycemic activity. V-Life MDS 4.4 software and PreADMET software were used for *in-silico* screening and ADME studies of selected compound for actual synthesis and in-vitro evaluation. Sitagliptin (-40.61) was used as standard *.in silico* screening of 1200 Quinazoline and derivatives of Quinazoline containing molecules was carried out on DPP-IV enzyme to obtain best fit nitrogenous heterocyclic compound for DPP-IV inhibition and molecules were prioritized with their comparable docking score which are compared with Sitagliptin .ADMET parameters like HIA, Caco2 cell permeability, MDCK and PPB were considered for prioritization. Statistical data of molecules showed potent antihyperglycemic activity. Compounds ASN1, ASN2, ASN4, ASN5, ASN9 and ASN10 with higher docking score were selected which are showing potent antihyperglycemic activity. These can further serve as templates for development of antihyperglycemic agents.

Keywords: Quinazoline, Quinazolinone, in-silico, ADME, Molecular docking, Antihyperglycemic.

*Corresponding author

INTRODUCTION

Diabetes mellitus is metabolic disorder which is characterized by high blood glucose level and insulin resistance. Type 2 diabetes mellitus (T2DM) is major cause of mortality. Inhibition of Dipeptidyl peptidase-IV (DPP-IV) plays a major role in treatment of diabetes.

Dipeptidyl peptidase-IV (DPP-IV)

Dipeptidyl peptidase-IV having E.C. no. 3.4.14.5 is also known as adenosine deaminase complexing protein. DPP-IV is responsible for the degradation of incretins which leads to increase in blood glucose level. DPP-IV inhibitors block DPP-IV enzyme which prevent degradation of incretins and regulate blood glucose level in body.

Type 2 diabetes is a chronic metabolic disease which is produced due to inability of the β -cells in the pancreas to secrete sufficient amounts of insulin. Insulin resistance and increased hepatic glucose production increases demand for insulin. Recent treatments are not sufficient to achieve control and produces undesirable side effect like hypoglycaemia, weight gain etc. Recent study of new drugs on mechanism of insulin production and its regulation of metabolism of sugar in body .Current study of DPP-IV has been found to plays important role.⁵

Quinazolin-e/ones as DPP-IV inhibitors

Research on Quinazolin-e/one and its derivatives lead to develop a new series of antihyperglycemic agent. A new series of Quinazolin-e/one was designed to resemble Sitagliptin structural feature and fitted with functional group to enhance inhibition activity of DPP-IV enzyme. So with this aim, in this paper it was attempted to study DPP4 inhibitors by drug design. Considering importance of DPP4 enzyme, it was chosen as target and with literature of Quinazoline and quinazolinone, these were found to be potent DPP4 enzyme inhibitor hence chosen for this research. In silico prioritization of these lead moieties as DPP4 enzyme inhibitor for antihyperglycemic activity was performed by VLife science MDS 4.4 drug design software. This research work reports in silico prioritization performed before actual synthesis, in-vitro pharmacological screening and in-vivo evaluation to obtain best fit Quinazolinones as potent DPP-IV inhibitors for antihyperglycemic activity.

MATERIALS AND METHODS

In-silico ADME predictions were obtained from www.bmrd.org. VLife MDS 4.4 Drug Design software for docking simulation on windows os. Chem draw Ultra 8.0 and Marvin beans used to draw structure and conversion of 2D to3D in mol files. 2D structure of ligand were prepared in Marvin sketch and convert to 3D by V-life science MDS 4.4 Drug design software. The 3D structure was stabilized by minimizing energy using molecular mechanics followed by Merck molecular force field (MMFF).The PDB of DPP-IV inhibitor receptor was obtained from protein data base with www.rcsb.org. The PDB was subjected for docking study.

In silico docking

In silico docking study were carried out using Vlife MDS 4.4 software. In silico screening was performed with selection of appropriate protein structure. The protein data bank file 4DSA for Anti-hyperglycaemic receptor was selected after comparative analysis from PDB sum and subjected to docking study. The obtained docking score were comparable with standard sitagliptin having score of (-40.61).

EXPERIMENTAL

In-silico screening

ADME Prediction

PreADMET software is used to obtain following *In-silico* ADME parameters.

Caco₂: cell permeability

Caco₂ cell permeability is used to determine the apparent permeability values of compounds within a specific range, molecules were solvated *in silico* at pH 7.4. By using Caco₂ cells the apparent permeability values of compounds were determined. The range of Caco₂ cell was found to be 4-70 nm/sec.

MDCK cell permeability

MDCK means Madin-Darby Canine Kidney cell. MDCK cells are used to determine apparent permeability values of used compounds. The range of MDCK is 25- 500 nm/sec.

Human Intestinal Absorption (HIA)

HIA data is sum of absorption and bioavailability obtained from ratio of excretion/cumulative excretion in urine, bile and faces. The range of HIA is 20- 70%.

Plasma Protein Binding

A unionised drug is available for diffusion or transport across cell membranes and interaction with a pharmacological target. *In-silico* ADME prediction is shown in table1.

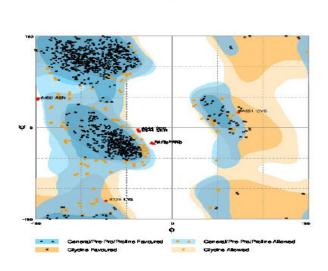
Compound	HIA@	Caco2 cell permeability++	MDCK+++	PPB	BBB
ASN1	95.34	19.96	0.3460	89.070	0.035
ASN2	95.26	20.20	29.100	85.970	0.120
ASN3	93.12	20.88	1.6644	87.970	0.057
ASN4	92.70	20.11	19.560	49.710	0.033
ASN5	86.32	15.60	4.2599	61.560	0.051
ASN6	90.25	20.88	4.8382	43.860	0.049
ASN7	89.01	19.86	5.7331	39.220	0.043
ASN8	96.91	34.40	0.0434	100.00	9.319
ASN9	97.63	21.92	0.0433	100.00	0.113
ASN10	94.83	20.76	2.5170	37.790	0.048

Table 1: It shows in silico ADME Prediction data for selected compound.

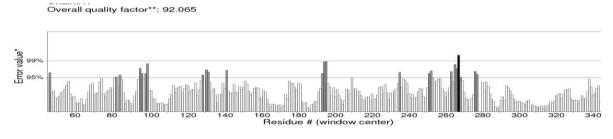
@HIA = Human Intestinal Absorption. ++Caco₂ cell permeability = human colon adenocarcinoma and possess multiple drug transport pathways through the intestinal epithelium. +++MDCK = Madin-Darby canine kidney cell. PPB = Plasma Protein Binding.

Docking study

VLife MDS 4.4 software is used for docking experiment. Docking studies involves following steps.


Selection of Protein data bank

In the selection process 3D structure of protein is analysed Protein (4DSA) was selected after a comparative analysis of different pdb protein structures.


Protein Validation

Ramachandran plot and Errata plot was used for protein validation. The Ramachandran plot showed residue in favoured region and allowed region. Fig.1 shows Ramachandran plot of protein PDB. Then protein subjected for active site analysis, optimization and docking study on V-Life MDS 4.4 software.

Errata plot was obtained from NIH MBI server for evaluation of protein and is showed in Fig.2

Figure 1: Ramachandran plot of PDB

Figure 2: Errata report of PDB

Active site analysis of 4DSA:

4DSA shows 4 cavities out of which cavity 1 was selected since it contained co-crystallized ligand. This site abundantly had lipophilic residues.

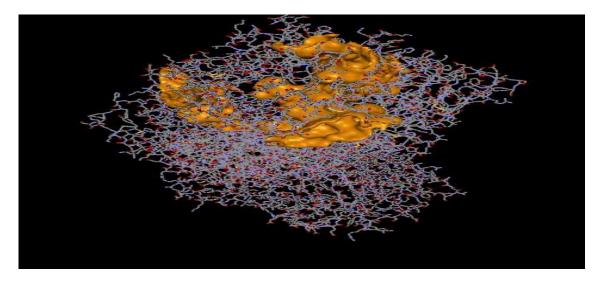


Fig. 3: It shows the co-ordinates, shape and active residues involved in 4DSA.

Protein pdb optimization

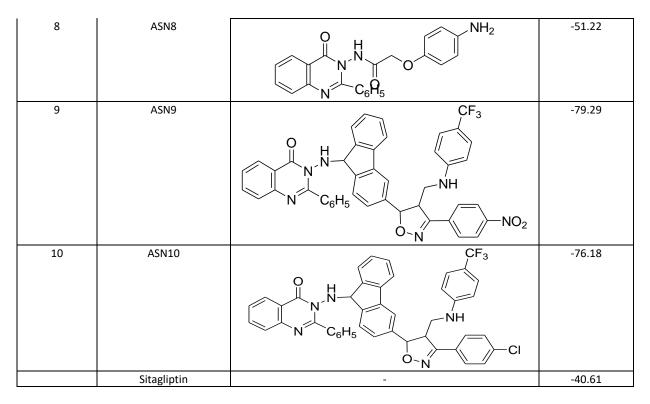
Water molecules were removed and addition of hydrogen atoms was performed and original ligand present in co-crystallized form was extracted out. Optimization of protein was done and this file used for docking studies.

May – June 2017 RJPBCS 8(3) Page No. 877

Library design and ligand preparation

Marwin bean software was used to draw molecular structure of ligands. V-Life MDS 4.4 was used to convert 2D mol files into 3D mol files. Designed molecules were series shown below. Library of total 131 compounds was developed. Structures of ligands were designed shown from series 1: 6,8-dihalo-(substituted/unsubstituted)2-alkyl-3-substituted-quinazolin-4(3H)-ones. Series8: 2-alkyl-3-substituted N-((3-(4-substituted phenyl)-5-(9H-carbazole-3-yl)-4,5-dihydroisoxazol-4-yl)methyl)-4-substituted aniline-quinazolin-4(3H)-ones.

Docking of ligand:


Vlife MDS 4.4 software used for docking. Grip docking was done. Grip based docking id exhaustive and rigid docking method, in which conformer of ligands generated. Choice of receptor cavity was chosen and grid is generated around cavity. Cavity points are found and the centre of mass of ligand is moved to each cavity point. All rotations of ligand are scanned at each cavity point where ligand is placed. For each rotation a pose of ligand is generated and corresponding bumps are checked for each pose of ligand and pose of ligand with the best score is given as output. Result of docking score, inhibition constant and binding energy are shown below in table no. (2-11).

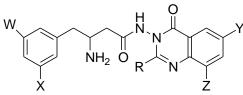

Sr. No.	Compound no.	Structure	Docking Score
1	ASN1	H = H = H = H = H = H = H = H = H = H =	-64.90
2	ASN2	$H_{2} O_{C_{6}H_{5}} N$	-56.21
3	ASN3	$HO \qquad HO \qquad$	-60.25
4	ASN4	$H_2N \xrightarrow{NH_2} H_2N \xrightarrow{O}_{C_6}H_5 \xrightarrow{O}_{N}$	-50.63
5	ASN5	N = N + N + 2 + 0 $N = N + 1 + 0$ $O = N + 1 + 0$ $O = O = N + 1 + 0$ $O = O = O = O = O = O = O = O = O = O =$	-52.82
6	ASN6	$HO \xrightarrow{HO} HO \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H \to H \oplus{H} H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H \to H \to H \to H$	-56.75
7	ASN7	$HO \xrightarrow{HO} O \longrightarrow{HO} O \xrightarrow{HO} O \xrightarrow{HO} O \longrightarrow{HO} O \to{HO} O \to$	-53.98

Table 2: It shows ligand of series 1

ISSN: 0975-8585

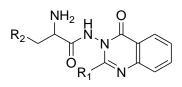


Table 3: It shows ligand of series 2

Sr. No.	Compound No.	R	W	X	Y	Z	Docking Score
11	ASN 11	CF₃	Br	Br	Н	Н	- 38.14
12	ASN 12	CF₃	Br	Br	Н	Н	-43.58
13	ASN 13	CH₃	Br	Br	н	н	-41.28
14	ASN 14	CH₃	Br	Br	Br	Br	-36.72
15	ASN 15	Н	Br	Br	Н	Н	-42.05
16	ASN 16	Н	Br	Br	Br	Br	-35.49
17	ASN 17	Н	Н	Н	Н	Н	-32.70
18	ASN 18	CF₃	Н	Н	н	н	-34.59
19	ASN 19	CF₃	Cl	Cl	Cl	Cl	-42.00
20	ASN 20	CF₃	I	I	I	I	-40.71
21	ASN 21	CF₃	NH ₂	NH ₂	NH ₂	NH ₂	-40.97
22	ASN 22	CH₃	Н	Н	Br	Br	-48.09
23	ASN 23	CF₃	Н	Н	Br	Br	-42.83
24	ASN 24	CH₃	Н	Н	Н	Н	-30.13
25	ASN 25	C ₆ H ₅	Н	Н	Н	Н	-64.90
26	ASN 26	C ₆ H ₅	Н	Н	Br	Br	-50.75
27	ASN 27	CF₃	Н	Н	Н	Н	-39.46
28	ASN 28	C ₆ H₅	Br	Br	Br	Br	-43.42
29	ASN 29	C ₆ H₅	Br	Br	Н	Н	-43.66
30	ASN 30	C ₆ H ₅	Cl	Cl	Н	Н	-49.32
	Sitagliptin	-	-	-	-	-	-40.61

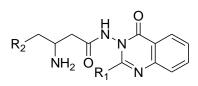

May – June

Table 4: It shows ligand of series 3

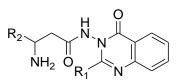

Sr. NO.	Compound No.	R ₁	R ₂	Docking Score
31	ASN 31	C6H₅	C6H₅	-38.50
32	ASN 32	C₀H₅	4-OH C ₆ H ₄	-51.40
33	ASN 33	C6H₅		-43.23
34	ASN 34	C6H₅		-43.16
35	ASN 35	C ₆ H₅	H₃C _{`S} ∕	-34.09
	Sitagliptin	-	-	-40.61

Table 5: It shows ligand of series 4

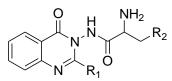

Sr. NO.	Compound No.	R ₁	R ₂	Docking Score
36	ASN 36	C ₆ H ₅	C ₆ H ₅	-60.88
37	ASN 37	C ₆ H ₅	4-OH C ₆ H ₄	-47.88
38	ASN 38	C ₆ H ₅		-45.27
39	ASN 39	C ₆ H ₅		-50.44
40	ASN 40	C ₆ H₅	(CH ₃) ₂ CH-	-42.22
41	ASN 41	C_6H_5	H ₂ N	-39.62
42	ASN 42	C_6H_5		-40.74
43	ASN 43	C_6H_5	NH N	-48.53
44	ASN 44	C_6H_5	HO	-54.89
45	ASN 45	C_6H_5		-50.61
	Sitagliptin	-	-	-40.61

Table 6: It shows ligand of series 5

Sr. NO.	Compound No.	R1	R ₂	Docking Score
46	ASN 46	C₀H₅	C ₆ H ₅	-50.86
47	ASN 47	C₀H₅	4-OH C ₆ H ₄	-60.25
48	ASN 48	C_6H_5	N	-50.03
49	ASN 49	C ₆ H₅		-38.17
	Sitagliptin	-	-	-40.61

Table 7: It shows ligand of series 6

Sr. NO.	Compound No.	R1	R ₂	Docking Score
50	ASN 50	C_6H_5	(CH ₃) ₂ CH-	-41.62
51	ASN 51	C_6H_5	H ₂ N	-50.63
52	ASN 52	C_6H_5	H ₂ N	-43.15
53	ASN 53	C ₆ H ₅	$HN \underbrace{HN}_{NH_2} HN$	-44.45
54	ASN 54	C ₆ H₅		-38.54
55	ASN 55	C_6H_5	NH N	-52.82
56	ASN 56	C_6H_5	NH	-41.49
57	ASN 57	C_6H_5	HO	-50.37
58	ASN 58	C_6H_5	HO	-56.75
59	ASN 59	C_6H_5	HO	-37.80
	Sitagliptin	-	-	-40.61

May – June

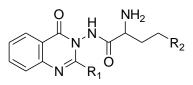


Table 8: It shows ligand of series 7

Sr. NO.	Compound No.	R ₁	R ₂	Docking Score
60	ASN 60	C ₆ H ₅	O NH H	-44.83
61	ASN 61	C ₆ H ₅	N N H	-52.53
62	ASN 62	C ₆ H ₅		-28.01
63	ASN 63	C ₆ H₅		-35.85
64	ASN 64	C ₆ H ₅	но	-53.98
65	ASN 65	C ₆ H ₅		-48.62
66	ASN 66	C ₆ H₅		-44.36
	Sitagliptin	-	-	-40.61

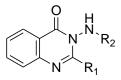
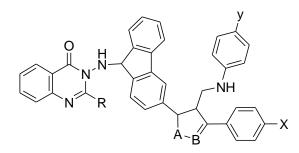


Table 9: It shows ligand of series 8

Sr. NO.	Compound No.	R ₁	R ₂	Docking Score
67	ASN 67	C ₆ H₅	H ₃ C O	-40.83
68	ASN 68	C ₆ H ₅	H ₃ C	-37.37
69	ASN 69	C_6H_5	H ₃ C	-38.62
70	ASN 70	C ₆ H ₅	Br	-35.29
71	ASN 71	C ₆ H₅	Br	-34.91
72	ASN 72	C ₆ H ₅	Br	-36.82

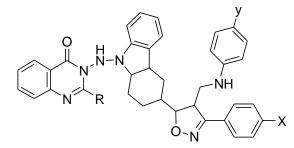
ISSN: 0975-8585

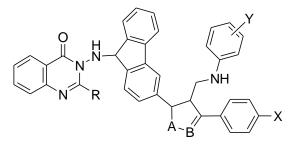
73 ASN 73 C_0H_5 OH -41.80 74 ASN 74 C_0H_5 OH -44.99 75 ASN 75 C_0H_5 OH -44.99 76 ASN 76 C_0H_5 O -40.08 77 ASN 76 C_0H_5 O -41.46 77 ASN 77 C_0H_5 O -41.46 77 ASN 77 C_0H_5 O -41.46 78 ASN 78 C_0H_5 O -41.46 78 ASN 78 C_0H_5 O -41.46 78 ASN 79 C_0H_5 O -41.46 78 ASN 80 C_0H_5 O -41.46 80 ASN 80 C_0H_5 O -41.65 78 ASN 79 C_0H_5 $H_2N^{-N} \sim C^{-1}H_6^{-1}$ -42.88 81 ASN 80 C_0H_5 $H_2N^{-N} \sim C^{-1}H_6^{-1}$ -42.17 83 ASN 82 C_0H_5 $H_2N^{-1} \rightarrow -42.35$ -42.34 85 ASN 85 C_0H_5 $H_2N^{-1} \rightarrow -42.34$		1	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	73	ASN 73	C ₆ H ₅	ОН	-41.80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				OH	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	74	ASN 74	C ₆ H₅		-44.99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	75	ASN 75	C ₆ H ₅		-40.08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				H ₂ C ¹ O ¹	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76	ASN 76	C₀H₅	<u> </u>	-41.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				L L L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				H´ O´ ✓	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	79	ASN 79	C ₆ H₅		-38.97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80	ASN 80	C ₆ H₅	ОН	-46.88
81 ASN 81 C_6H_5 N_{N_N} -47.66 82 ASN 82 C_6H_5 HO -42.17 83 ASN 83 C_6H_5 HO -42.35 84 ASN 84 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 H_2N -42.34 87 ASN 87 C_6H_5 O_{H_2N} -40.03 87 ASN 87 C_6H_5 O_{H_2} O_{H_2} -35.06				ы N≈ _C .CH	
81 ASN 81 C_6H_5 N_{N_N} -47.66 82 ASN 82 C_6H_5 HO -42.17 83 ASN 83 C_6H_5 HO -42.35 84 ASN 84 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 H_2N -42.34 87 ASN 87 C_6H_5 O_{H_2N} -40.03 87 ASN 87 C_6H_5 O_{H_2} O_{H_2} -35.06				H ₂ N H	
83 ASN 83 C_6H_5 H_2N -42.35 84 ASN 84 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 O_{H_2N} -40.03 87 ASN 87 C_6H_5 O_{H_2} O_{H} -35.06 87 ASN 87 C_6H_5 O_{H_2} H_1 -35.06	81	ASN 81	C ₆ H ₅	N	-47.66
83 ASN 83 C_6H_5 H_2N -42.35 84 ASN 84 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 O_{H_2N} -40.03 87 ASN 87 C_6H_5 O_{H_2} O_{H} -35.06 87 ASN 87 C_6H_5 O_{H_2} H_1 -35.06				\ N	
83 ASN 83 C_6H_5 H_2N -42.35 84 ASN 84 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 85 ASN 85 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 H_2N -42.34 86 ASN 86 C_6H_5 O_{H_2N} -40.03 87 ASN 87 C_6H_5 O_{H_2} O_{H} -35.06 87 ASN 87 C_6H_5 O_{H_2} H_1 -35.06			<u> </u>		42.47
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				HO	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	83	ASN 83	C ₆ H₅	H N A	-42.35
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				H ₂ N ¹	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	84	ASN 84	C ₆ H ₅	H	-42.34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				H ₂ N ^{-N}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	85	ASN 85	C ₆ H ₅	U OH	-39.86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				N N	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			<u> </u>		40.02
$\begin{array}{ c c c c c c } \hline & & & & & & & & & \\ \hline 87 & ASN 87 & C_6H_5 & & O & OH & & & \\ \hline & & & & & & & & \\ \hline & & & & &$	86	ASN 86	C ₆ H ₅		-40.03
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & \\ \hline & & & & & $				H ₃ C ^N N	
$H_{3}C C N_{1} N_{1}$		A CN 07	<u></u>	H	25.00
	87	ASN 87	C ₆ H ₅		-35.06
				H ₃ C _C N	
88 ASN 88 C ₆ H ₅ O OH -43.34				_	
	88	ASN 88	C ₆ H ₅		-43.34
				H ₃ C _C NN	
$ \begin{vmatrix} & & & \\ & & & \\ & & & H_2 \end{pmatrix} = \begin{pmatrix} & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & &$				H ₂ H	
89 ASN 89 C ₆ H ₅ H ₂ OH -41.56	89	ASN 89	C ₆ H ₅	H ₂ Q OH	-41.56
$H_{3}C \stackrel{\frown}{\longrightarrow} C \stackrel{\frown}{\longrightarrow} N^{+} \stackrel{\frown}{\longrightarrow} $				$H_3 C$ C N $<$ H	
90 ASN 90 C ₆ H ₅ OH -45.04	90	ASN 90	C ₆ H₅	_	-45.04
H_3C^{-1}				$ H_3C N \ll \vee$	
91 ASN 91 C ₆ H ₅ NH ₂ -44.33	91	ASN 91	C ₆ H ₅		-44.33
$H_2N' \checkmark \downarrow$					
O	L			0	



ISSN: 0975-8585

		-		
92	ASN 92	C_6H_5	NH ₂	-46.62
			H_3C_N	
93	ASN 93	C ₆ H₅	NH ₂	-33.56
33	A3N 33	C6115		-33.30
94	ASN 94	C ₆ H₅		-45.09
54	A3N 34	C6115	H ₂ N	45.05
95	ASN 95	C_6H_5	H ₃ C	-36.86
96	ASN 96	C_6H_5	NH ₂	-43.83
			H ₂ N O	
97	ASN 97	C_6H_5	O	-55.54
			H ₂ N	
			Ö	
98	ASN 98	C_6H_5	O U	-42.83
			H ₂ N O	
99	ASN 99	C ₆ H₅	0	-44.98
55	A3N 33	C6115		-44.98
			H O H	
100	ASN 100	C_6H_5	0	-56.41
101	ASN 101	C_6H_5		-42.76
			H ₂ N	
102	ASN 102	C_6H_5	0 	-52.84
			H Ö	
103	ASN 103	C_6H_5		-56.51
104	ASN 104	C ₆ H₅		-49.72
104	7211 104	C6115	H ₂ N	-45.72
105	ASN 105	C ₆ H ₅		-37.99
		.	0	
106	ASN 106	C ₆ H₅		-45.49
	Sitagliptin	-	- 0	-40.61


May – June 2017


Table 10: It shows ligand of series 9

Sr. No.	Compound No.	R	Α	В	x	Y	Docking Score
107	ASN 107	C ₆ H₅	0	N	Н	Н	-44.62
108	ASN 108	C ₆ H₅	0	N	Cl	Cl	-52.92
109	ASN 109	C ₆ H₅	0	N	Cl	CF ₃	-76.18
110	ASN 110	C ₆ H₅	0	N	NO ₂	CF ₃	-79.29
111	ASN 111	C ₆ H₅	S	N	Cl	CF ₃	-43.82
112	ASN 112	C ₆ H₅	S	N	NO ₂	CF ₃	-32.82
113	ASN 113	C ₆ H₅	S	N	Br	CF ₃	-40.29
114	ASN 114	C ₆ H₅	S	N	F	CF ₃	-24.89
115	ASN 115	C ₆ H₅	S	Ν	CF3	CF ₃	-42.56
116	ASN 116	C ₆ H₅	S	Ν	Н	Н	-50.21
	Sitagliptin	-	-	-	-	-	-40.61

Table 11: It shows	ligand of series 10
--------------------	---------------------

Sr. No.	Compound No.	R	Х	Y	Docking Score
117	ASN 117	C ₆ H₅	Н	Н	-38.45
118	ASN 118	C ₆ H ₅	NO ₂	CF ₃	-54.30
119	ASN 119	C ₆ H₅	Cl	CF3	-57.94
120	ASN 120	C ₆ H₅	CF ₃	CF ₃	-43.17
	Sitagliptin	-	-	-	-40.61

Sr. No.	Compound No.	R	Α	В	Х	Y	Docking Score
121	ASN 121	C_6H_5	NH	Ν	Cl	p-CF₃	-58.43
122	ASN 122	C_6H_5	Ν	Ν	NO ₂	p-CF₃	-58.52
123	ASN 123	C ₆ H ₅	0	Ν	ОН	p-CF₃	-58.47

May – June

2017

RJPBCS

8(3)

Page No. 885

				-			
124	ASN 124	C ₆ H ₅	0	N	Cl	p-CF ₃	-64.12
125	ASN 125	C ₆ H ₅	0	N	Cl	p-Cl	-50.36
126	ASN 126	C ₆ H₅	0	N	Cl	p-NO ₂	-58.67
127	ASN 127	C ₆ H ₅	0	Ν	NO ₂	p-NO ₂	-49.99
128	ASN 128	C_6H_5	0	Ν	Cl	m- NO ₂	-55.33
129	ASN 129	C ₆ H ₅	0	N	Cl	m-Cl, p-F	-57.35
130	ASN 130	C ₆ H ₅	0	N	Cl	o-Cl, p-	-61.78
						NO ₂	
	Sitagliptin	-	-	-	-	-	-40.61

RESULT AND DISCUSSION

Form figure 1 and 2 the protein structure was validated. Around 1200 molecules was docked and screened best score prior to actual synthesis. Changes were made in substituent's position carried out. Alkyl/phenyl substitution on Quinazoline ring results in increased score and activity and it was found that it may results in increased anti-hyperglycemic activity.

All the molecules were found to be fitting the actual binding pocket of molecule Sitagliptin. Most of the good scoring ligands from the synthetic series 1,3,4,5,8 were obtained. From above work prioritized compounds are shown in fig. 4.

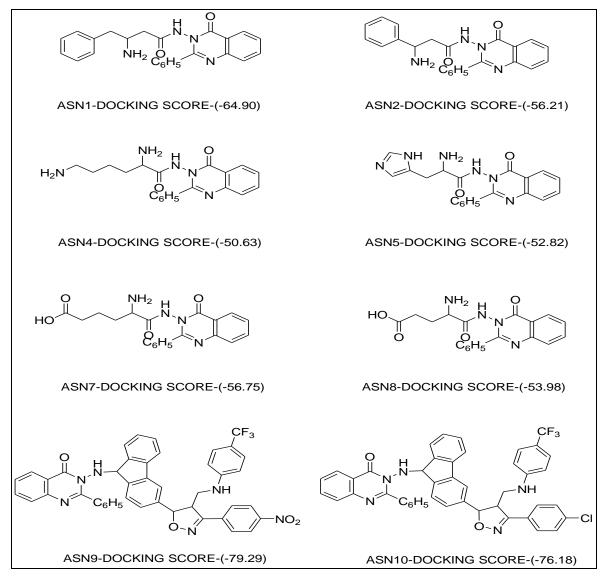


Fig.04: Prioritized Molecules

CONCLUSION

Most of ligands were found to be interacting with the amino acid residues of the active sites. The present work leads to the development of Quinazoline derivatives as an antihyperglycemic lead by *In-Silico* design. Compound ASN1, ASN2, ASN4, ASN5, ASN9 and ASN10 were found to be active *In Silico* as compared with Sitagliptin used as standard and can be considered as useful template for antihyperglycemic lead development.

ACKNOWLEDGEMENTS

The authors acknowledge Indian council for Medical Research (ICMR), a constituent of Ministry of Health and Family Welfare, New Delhi, autonomous for Medical Research in India.

REFERENCES

- [1] Megha Sahu and amit nerkar, In Silico screening ,synthesis and In-Vitro evaluation of some quinazolinone derivatives as a Dihydrofolate Reductase inhibitors for anticancer activity : Pary 1,IJPPS,vol.6,issue 5, 2014.
- Sanjay D. Sawant, Amit G. Nerkar, Nayana D. Pawar, Archana V. Velapure. Design, synthesis, QSAR studies and biological evaluation of Novel triazolopiperazine based amides as Dipeptidyl Peptidase-IV (DPP-IV) Inhibitors: Part 2, International journal of Pharmacy and Pharmaceutical Science, vol 6, suppl 2, 2014.
- [3] A.G.Nerkar, S.A.Ghone and In Silico screening of the library of pyrimidine derivatives as a Thymidylate synthase inhibitors for anticancer activity.E-Journal of chemistry 2009,6(3),665-672
- [4] Deepti Kohli, S.Riaz Hashimi, Sagar Vishali, Manish Sharma. Synthesis and antibacterial Activity of Quinazolinone derivatives. International Journal of Pharmaceutical Science, vol-1 Issue-1, July-Sept. 2009.
- [5] Na-Hyung-Kim, Taeyang Yu, Dae Ho lee. The Non Glycemic Action of Dipeptidyl peptidase-IV Inhibitors. BioMed Rsearch International Volume 2014 Article ID 368703:1-10
- [6] Awwad A. Radwan and Salah G. Ali. Synthesis of new 4(3H)-Quinazolinone derivatives of potential antimicrobial activity. Bull. Pharm.Sci., Assiu university, vol.3, Part2, 2007, pp. 181-192.
- [7] Seshadri K.J, Kirbha H, B. Gliptins: A new class of oral antidiabetic agents. Ind. J. Pharm. Sci. 2009; 71(6):608-614.
- [8] Sahu M, Nerkar AG, Sawant SD. In silico In Silico Screening, Synthesis and Pharmacological Screening of Quinazolinones Containing Oxazepinone Ring as NMDA Receptor Antagonists for Anticonvulsant Activity: Part –I. J. Young. Pharmacist 2015; 7(1):21-27.
- [9] Shweta Valvi Amit G. Nerkar, Megha Sahu, and Sanjay D. Sawant. *In silico* Design,Synthesis and Pharmacological screening of Quinazolinones as NMDA receptor antagonist for Anticonvulsant activity: Part II –Journal of Young Pharmacist-2015.
- [10] Nerkar AG, Chikhale HU, Joshi PP, Kudale SA, Lade KS, Sawant SD. In silico Design, Synthesis & Pharmacological Screening of Some Quinazolinones as Possible GABA receptor Agonists for Anticonvulsant Activity. Int. J. Pharm. Pharm Sci. 2012; 4(2):466-469.
- [11] www.rcsb.com
- [12] Redha I. Al-Bayati, Ahmad A.H. Al-Amiery, Yasmien K. Al-Majedy.Novel quinazolinone derivatives: Synthesis and Antibacterial Activity. ECSOC-14, November-2010
- [13] Adel S. El-Azab, Adnan A. Kadi, Ahmed M. Alafeefy and S.G. Abdel-Hamide. Synthesis of some new Quinazoline analogs and their antimicrobial activity.