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ABSTRACT 

 
In this study, a new method for the prediction of octanol/water partition coefficient (logkow) for 123 

volatile organic compounds belonging to 7 different chemical classes (hydrocarbons, alcohols, aldehydes, 
ketones, carboxylic acids, esters and halogen compounds) based on molecular signature descriptors . Our 
approach consisted of molecular descriptors calculation, then finding the correlation between the desired 
property (logkow) and the molecular structures. Both steps are facilitated by the use of signature. Application of 
the multi linear regression method using KNIME software led to equation for the totality of chemical classes. 
Such calculation gives us a model that gives results in remarkable correlations with the descriptors of these 
chemical classes (R2 = 0.97, SD = 0. 25). 
Keywords: logkow; Signature descriptor; property prediction; QSAR; model. Lipophilic / hydrophilic; property  
estimation. 
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INTRODUCTION 
 

Among the important physicochemical properties of chemical compounds, especially those being 
considered for drug development programs, is lipophilicity. This powerful property, which is expressed by the 
octanol–water partition coefficient (Kow), estimates the solubility in both aqueous and organic phases [1]. 
Although several methods are available for the estimation of Kow of organic compounds [2,3,4] , the values of 
Kow generated using these various methods may vary by several orders of magnitude hence Kow is usually 
expressed in the logarithmic form [5]. LogKow is essential for understanding the transport mechanisms and 
distribution of compounds in vivo [6]. This is of particular interest to many fields including pharmacology, 
medicine, foods, chemical industry, fragrances, and environmental protection [7]. For example, logKow is 
widely employed in predicting the specificity of organic molecules towards their target proteins, their 
metabolism and more commonly their efficiency in crossing cellular membranes [8-9]. 
 

The motivation to produce more sustainable and environmentally friendly chemicals that meet the 
consumer needs has increased considerably over the last decade [10]. Therefore, it is important to have a 
systematic methodology that allows the design of chemicals that possess both the consumer specified 
attributes and acceptable environmental characteristics. Most biological and environmental properties are 
structure dependent and functional group contribution techniques are not available or reliable for the 
determination of these properties [11]. However, a lot of work has already been done to categorize atoms or 
molecules systematically based on their structure and to relate these assignments to their biological activities 
and physicochemical properties [12].  
 

The Quantitative Structure- Property Relationships (QSPR) is a viable tool in the determination of 
many properties from molecular structure information. Quantitative structure–property relationships (QSPR) 
remain the focus of many studies aimed at modeling and predicting the physicochemical and biological 
properties of molecules. A powerful tool that helps in this task is chemometrics, which uses statistical and 
mathematical methods to extract maximum information from data sets [13], and it has provided new insight in 
to the philosophy  and theory behind QSPR modeling [14–15]. QSPR has received significant contributions from 
various research schools [16–17]. QSPR models represent powerful tools already successfully used for 
biological [18], toxicological [19-20], pharmaceutical [21-22] and physico-chemical applications [23-24]. It uses 
chemometric methods to describe how a given physicochemical property varies as a function of molecular 
descriptors describing the chemical structure of molecules. 
 

The aim of the present study is to investigate the possibility of estimating the lipophilicity of organic 
compounds, namely logKow of 123 volatile organic compounds from 7 different classes (hydrocarbons, 
alcohols, aldehydes, ketones, carboxylic acids, esters and halogen compounds). 
 

In order to obtain a relationship suitable for structurally diverse sets, using a technique to describe 
molecules on a computer, called signature. This relationship is represented in QSPR model, which is a 
mathematical equation that relates the variation of the logKow in a series of structurally similar compounds to 
the variation in their chemical structure. The molecular descriptors used in the QSPR model building are based 
on the concept of molecular signatures and their calculation method needs to only count the appearance of a 
particular signature in a molecule as a descriptor.  
 
Methodology 
 
Molecular signature descriptor : 
 

The molecular signature is a powerful molecular descriptor with previous success in molecular 
structure representation. It is a type of topological index that encodes all atoms in a pre-defined height h away 
from the root atom [25]. The molecular signature for a compound is the sum of each atomic signature 
multiplied by the occurrence vector of that atomic signature in the given compound and it can be calculated 
using the following equation [25]: 
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Where the elements of VG (matrix of the vertices) are the atoms (X) , h∑ is the basis set of all atomic 

signatures of height h, and  is the vector of occurrence number of atomic h-signatures of graph G. 

Examples of molecular signatures for methyl butyl acetate and methyl benzoate are given in Figure 1. 
  

Methyl butyl acetate Methyl Benzoate 

  

σ1(C)=  [C]([C] [O][ H][H])+3[C]([C][H][H][H])+ [C]( [C] [C] 
[H][H]) + [C]([C][O]=[O])+ [C]( [C] [C] [C] [H]) + [O]( [C] 

[C])+ [O]( = [C]) + 14[H]([C]) 

σ1(C)=  [C]( [O][H][H][H])+ [C]([C][O]=[O]) + 
5[C](p[C]p[C][H]) +   [C](p[C]p[C] [C]) +[O]([C] [C]) 

+ [O](= [C])+ 8[H]([C]) 

 
Figure 1: Graphical depiction of the 1-Signatures for Methyl butyl acetate and Methyl Benzoate 

 
The aim of this study is to explore the utility and robustness of molecular signatures as descriptors in 

QSPR. To this end we have chosen a data set to explore the various features of signature for QSPR modeling. 
 

The work was divided in two phases. The first devoted to the account of molecular signatures as 
descriptors for all compounds belonging to the database. This phase contained the calculation of unique height 
1 atomic signatures Table 1 and construction of constraint equations, and their solutions are showed in Table 2 
followed by molecular  signatures (molecular descriptors) calculation examples Table 3. In the second phase, 
volatile organic compounds structures,  octanol – water partition coefficient (logKow) experimental values and 
multiple linear regression analysis techniques were combined together to generate predictive quantitative 
structure property relationship QSPR model(s). 
 
Calculation of the unique height 1 atomic signatures: 
 

We made the calculation of   unique height 1 atomic signatures of seven chemical families, and then 
we surveyed these signatures (similar signatures are represented by only one). The results of this survey gave 
us 32 atomic signatures (X1 to X32). The unique height 1 atomic signatures for the volatile organic compounds 
dataset are given in Table 1. As an example, the first atomic signature X1, encodes a carbon atom to chloride 
atom, and two aromatic carbon atoms. 

 
Table 1: height 1 atomic Signature database 

 

Unique height-1 atomic 
signatures 

The atoms (X)  
Unique height -1 atomic 

signatures 
The atoms (X) 

[C]([C] = [C][H]) X17  [C](p[C]p[C][Cl]) X1 

[C]( = [C] [H][H]) X18  [C]([C] = [O][H]) X2 

[C]([C] [O] = [O]) X19  [C](p[C]p[C][C]) X3 

[C]([O][H][H][H]) X20  [C](p[C]p[C][H]) X4 

[C]([C][O][H][H]) X21  [C]([C][H][H][H]) X5 

[C]([C][C][O][H]) X22  [C]([C][H][H][Cl]) X6 

[C]([C][C][C][O]) X23  [C]([C][C][H][I]) X7 

[O]( [C] [C]) X24  [C]([ H][ H][H][I]) X8 

[O]( [C] [H]) X25  [C]([ C][ H][H][I]) X9 

[O]( = [C]) X26  [C]([C][C][H][Br]) X10 
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[F]( [C]) X27  [C]([ C][ H][H][F]) X11 

[Br]( [C]) X28  [C]([ C][ H][H][Br]) X12 

[I]( [C]) X29  [C]([C][C][H][H]) X13 

[Cl]( [C]) X30  [C]([C] [C] = [O]) X14 

[H]( [C]) X31  [C]([C] [C] = [C]) X15 

[H]( [O]) X32  [C]([C][C][C][H]) X16 

 
Construction of constraint equations: 
 

The key feature of signature is its ability to develop a set of Diophantine (polynomial equation in 
which only integer solutions are allowed.) constraint equations [26]. These equations are divided in two 
groups: consistency equations and graphicality equation. Equations (1, 3, 5, 7, 8, 9, 10 and 11) are referred to 
as the consistency equations, and are created from the height 1 atomic signatures. The purpose of the 
consistency equations is to account for the fact that a bond in one atomic signature must appear in another 
atomic signature, but in the reverse order. 
 

The second type of constraint equation is known as the graphicality equation. It is developed from the 
height 0 atomic signatures, and is a necessary condition for a connected graph [27]. The conditions for 
satisfying the graphicality equation are that the sum of vertex (root atom) degrees must be even, and the 
number of vertices of an odd degree must be even. The graphicality equation for the volatile organic 
compounds dataset is provided in equations (2, 4, 6 and 12). 
 
-X2 - X4 -3 X5 – 2X6  - X7 -3X8 - 2X9 – X10 – 2X11  – 2X12 – 2X13   –X16  – X17  – 2X18    – 3X20    – 2X21   – X22 
+ 2X31   =  0 

Eq. 1 

Mod (X3  +  X5 +  X6 + 2X7  +   X9  + 2 X10  +X11 + X12+ 2X13  +2 X14  + 2X15   +3X16 + X17 + X19  + X21  + 2X22   
+ 3X23     ,  2 )  =  0 

Eq. 2 

-X19 – X20 - X21 –X22  - X23  + 2X24  + X25   =  0 Eq. 3 
Mod (   X15 +   X17  +   X18 ,  2 )  =  0 Eq. 4 
-X2 – X14- X19 + 2X26  =  0 Eq. 5 
Mod (   2X1 +   2X3  +   2X4 ,  2 )  =  0 Eq. 6 
-X1 – X6 + X30  =  0 Eq. 7 
-X7 – X8- X9 + X29  =  0 Eq. 8 
-X10 – X12- X19 + X28  =  0   Eq. 9 
-X25 + 2X32  =  0   Eq. 10 
-  X11 + 2X27  =  0 Eq. 11 
Mod (X1  +  X2+  X3+ X4 +  2 X5  + 2 X6  +2X7 + 2X8+ 2X9  +2 X10  + 2X11   +2X12 + 2X13 + X14 + X15 + 2X16   + 
X17  +X18 + X19 + 2X20 + 2X21 + 2X22 +2 X23    -X26 – X27 - X28 – X29- X30 –X31- 2X32   ,  2 )   =  0 

Eq. 12 

 
Any solution which satisfies all the constraint equations is evaluated for fitness by means of a QSPR 

generated on the training set. The molecular descriptors (molecular signatures) were calculated using the 
values of table 2 and some calculation examples are registered on table 3. 
 

Table 2: Constraint equations solutions values 
 

The atoms (X) First values Second values  The atoms (X) First values Second values 

X1 2 1  X17 1 2 

X2 3 2  X18 2 1 

X3 3 2  X19 1 1 

X4 1 2  X20 3 2 

X5 3 1  X21 3 3 

X6 1 2  X22 1 1 

X7 2 1  X23 2 1 

X8 2 1  X24 1 2 

X9 3 1  X25 8 4 

X10 1 1  X26 3 2 

X11 6 6  X27 3 3 

http://mathworld.wolfram.com/Integer.html
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X12 2 2  X28 4 4 

X13 2 2  X29 7 3 

X14 2 1  X30 3 3 

X15 3 3  X31 36 28 

X16 1 1  X32 4 2 

 
Table 3: molecular signatures calculation examples 

 

Calculation Molecular  Signature Molecules 

σ1(C) =  X13  +2 X5+8 X31 
σ1(C) =  

[C]([C][C][H][H])+2[C]([C][H][H][H])+8[H]([C]) 
n-Propane 

σ1(C) = 2 X13+2 X5+10 X31 
σ1(C) = 

2[C]([C][C][H][H])+2[C]([C][H][H][H])+10[H]([C]) 
n-Butane 

σ1(C) =  X20+X25+ X32 +3 X31 
σ1(C) = [C]([O][H][H][H])+[O]([C][H])+[H]([O]) 

+3[H]([C]) 
Methanol 

σ1(C) = X21+ X25++ X32 +5 X31 

σ1(C) = 
[C]([C][O][H][H])+[O]([C][H])+[C]([C][H][H][H])+

5[H]([C])+[H]([O]) 
Ethanol 

σ1(C) = X5+ X2+ X26+4 X31 
σ1(C)= [C]([C][H][H][H])+[C]([C] = 

[O][H])+[O](=[C]) +4[H]([C]) 
Acetaldehyde 

σ1(C) =  X18+  X17+ X26+4 X31+ X2 
σ1(C)= [C]( =[C][H][H])+[C]([C] = 

[C][H])+[O](=[C]) +4[H]([C]) +[C]([C] = [O][H]) 
Propanal 

σ1(C) = X26+4 X31+ X19+X5+ X25+ X32 

σ1(C) =  [O]( = [C])    + 4 [H]([C]) + [C]([C] [O] = 
[O])  + [C]([C][ H] [H][H]) +   [O]( [C] [H]   + 

[H]([O]) 
Acetic acid 

σ1(C) =  X14+2 X5 + X13+ X26+8 X31 
σ1(C) = [C]([C][C] = [O])  + 2[C]([C][[H][H][H]) + 

[C]([C][C] [H][H])   +  [O]( = [C]) +8[H]([C]) 
2- Butanone 

σ1(C) =  X21 + 3 X5+ X19 + X24+X16 + 
X13+X26+ 14X31 

σ1(C)=  [C]( [C] [O][ 
H][H])+3[C]([C][H][H][H])+[C]([C][O]=[O])+[O]( 
[C] [C])+ 14[H]([C]) + [O]( = [C])  + [C]( [C] [C] [ 

H][H]) + [C]( [C] [C] [C] [H]) 

2-Methyl Butyl 
Acetate 

σ1(C) = 5 X13 + X10+ 17 X31 +2X5+ X28 

σ1(C)=  
5[C]([C][C][H][H])+[C]([C][C][H][Br])+2[C]([C][H]

[H][H])+[Br]([C])+17[H]([C]) 
Bromooctane 

 
Multiple Linear Regressions (MLR) 
 

The multiple linear regression statistic technique is used to study the relationship between one 
dependent variable and several independent variables. It is a mathematic technique that minimizes 
differences between actual and predicted values. The multiple linear regression model (MLR) was generated 
using KNIME software which shown on Figure 2 and 3, to predict logkow of 123 volatile organic compounds 
belonging to 7 different classes: (hydrocarbons (32), alcohols(27), aldehydes (11), ketones(16), carboxylic 
acids(15), esters(13) and halogen compounds(9)). 
 

Before applying multiple linear regression (MLR), there is a preparatory phase shown in the work 
diagram include the following: selection of the data set from [4], calculation of the unique height1 atomic 
signatures Xk from the molecular graph table1, construction of constraint equations, constraint equations 
solutions ( The atoms (Xk)) calculation values table 2, for the calculation of molecular signatures hδG table 3. 
 

Multiple Linear  Regression was applied using KNIME software. The data base contains the values of 
molecular signatures as independent variables and the experimental values of logkow as dependent variable. 
The calculated model for predicting logkow using MLR was validated with random sampling cross validation. 
The MLR model is represented by following equation: 
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Where ai is the regression coefficients and b is the regression constant.  
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Figure 2: Multi-linear regression Knime diagram of all modelling process 

 
RESULTS AND DISCUSSION 

 
Some of molecular descriptor, which encodes the topological features of molecules, was calculated to 

describe their molecular structure. Forward stepwise regression routine is used to develop the linear model for 
the prediction of logkow using calculated molecular descriptors (molecular signatures) with random sampling 
cross validation method. After calculation for each class then for the totality of chemical classes the final QSPR 
models were developed and given in Table 4. The statistical parameters used in this work are: Correlation 
coefficient (R2), Standard Deviation (SD) and Standard Error Mean (SEM), Cross-validated coefficient (Q2), in 
the case of Eq. 13, for each class and all classes of compounds.  
 

Table 4:  statistical parameters (R2, Q2, SD, SEM) in the case of eq. 13. 
 

Class N° 
Training Validation 

R2 SD SEM Q2 SD SEM 

Alcohols 27 0.95 0. 472 0. 090 0.95 0.610 0.298 

Hydrocarbones 32 0.99 0. 215 0. 038 0.99 0.631  0.0024 

Carboxylic acides 15 0.99 0.186 0. 040 0.99 0.717 0.0127 

Aldehydes 11 0.84 0.559 0.168 0.88 1.954 0.2969 

Esters 13 0.79 0.716 0. 198 0.87 1.255 0.1041 

Ketones 16 0.97 0.366 0. 009 0.98 1.418 0.0412 

Halogen compounds 9 0.57 1.426 0.475 0.81 2.630 1.0980 

All compounds 123 0.97 0. 256 0. 00071 0.99 0.147 0.00087 

 
Based on the above calculated statistical parameters, we observe that there is a difference   between 

the correlation values of these chemicals classes.  The compounds which have  the nearest R2 values to the 
unity show  a strong correlation  between measured  and predicted logkows. But those  having the lowest 
values my present weak or eventually no correlation. In fact, carboxylic acids and hydrocarbons  have the 
highest R2 values, but for halogen compounds and esters have the lowest ones. This difference is due to the 
chemical structure of the compounds for each class, especially by the presence of the COO- group   and dipole-
dipole interactions in esters. As for the halogen compounds   the high electronegativity of the atoms due to 
their high effective nuclear charge and to the polarity of the C-X bond induces heterolytic mechanisms. 
 
 
 
 

https://en.wikipedia.org/wiki/Electronegativity
https://en.wikipedia.org/wiki/Effective_nuclear_charge
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Model Equation: 
 
logKOW = b  -a1×X32+ a2×  X31+ a3× X30+ a4× X29+ a5×X28 - a6×X26- a7× X24-a8×X23-a9× X22 -a10×X21- a11×X20 – a12× X18  
+a13×X17   – a14× X16 -a15×X14- a16×X13+ a17×X5   + a18× X4 +a19×X3+ a20×X2 
 

Where logkOW is the predicted or expected value of the dependent variable, Xj are distinct 
independent or predictor variables, b is the value of dependent variable when all of the independent variables 
Xj are equal to zero, and a1 through a20 are the estimated regression coefficients. Each regression coefficient 
represents the change in the dependent variable relative to a one unit change in the respective independent 
variable. The   estimated regression coefficients and their values are registered on Table 5. 

 
Table 5: the estimated regression coefficients and their values 

 
 

Values Eq parameters 

-0.564 a10 

-0.508 a11 

0. 114 a12 

0.555 a13 

0. 105 a14 

-0. 211 a15 

0. 219 a16 

0. 543 a17 

0. 397 a18 

-0. 034 a19 

0. 031 a20 

Values Eq parameters 

0.332 b 

0.007 a1 

0.001 a2 

0.101 a3 

0.108 a4 

0.097 a5 

-0.316 a6 

1.517 a7 

-1.962 a8 

-1.790 
a9 

 
The parameters (predictor variables) of QSPR equation   reflect quantitatively the well known fact that 

the logkow of a compound depends on these variables together. The calculated value for the logkow  are in 
good agreement with those of the experimental values. The predicted values for logkow for the compounds in 
the training and test sets using equation logKOW were plotted against the experimental logkow values in Figure 
4. 
 

The histogram shown in Figure 5 displays all rows of the incoming data, the x axis of the histogram 
view shows ten selected binning columns (bins) of the predicted logkow values. Whilst, the y axis  indicates the 
aggregation values which represent the affiliation frequency of some compounds in the selected predicted 
logkow bins . According to the range in the histogram, the chemical compounds that have logkowpred values 
between 0.988  and 3.625 are the most common, accounting for 70.7 % of the total studied compounds. 
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Figure 4: Shows the scatter plot of logkow(predi)/ logkow 

 

 
 

Figure 5: Histogram relating aggregation values to the pridictected logkow bins  
 

CONCLUSION 
 

In this work we presented the concept of atomic signature, utility of signature in QSPR study and how 
signature notation can be used to denote the molecular graph of a compound. We tested the height-1 
signatures to use it as descriptors in a QSPR by correlating the logkow values with molecular descriptors 
(molecular signatures).We found a well   linear correlation. The main advantage of signature versus other 
descriptors is its readiness for molecular structure representation.  
 

New multi-linear QSPR model was developed to study the possibility of estimation (prediction) for the 
octanol-water partition coefficients of 123 volatile organic compounds   belonging to seven different chemical 
classes using QSPR method and the concept of atomic signature. The linear relationship between logkow and 
the molecular descriptors (molecular signatures)  with  (R2 = 0.97, SD = 0. 25) produced a well mathematical 
relationship logkow = b + ∑(ai  ×  xJ). All molecular descriptors of this model can be easily calculated from the 
chemical structure of a molecule. The QSPR model developed in this study can provide a useful tool to predict 
the logkow of new compounds.  
 
 
 



     ISSN: 0975-8585 

May–June  2017  RJPBCS  8(3)  Page No. 1676 

REFERENCES 
 

[1] P. Isnard et S. Lambert, Estimating bioconcentration factors from octanol-water partition coefficient 
and aqueous solubility, 17, 1(1988) 21-34. 

[2] C.Hansch et A.Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New 
York, NY, 1979. 

[3] W.J. Lyman, W.F. Reehl et D.H. Rosenblatt, Handbook of Chemical Property Estimation Methods: 
Environmental Behavior of Organic Compounds, American Chemical Society, D.C. Washington, USA, 
1990. 

[4] E. S. Souza, L. Zaramello , C. A. Kuhnen , B. S. Junkes , R. A.Yunes et V. E. F. Heinzen, Estimating the 
Octanol/Water Partition Coefficient for Aliphatic Organic Compounds Using Semi-Empirical 
Electrotopological Index ,Int. J. Mol. Sci. 12 (2011), 7250-7264. 

[5] H. Kubinyi, QSAR: Hansch Analysis and Related Approaches, VCH, Weinheim, 1993. 
[6] F. A. L. Ribeiro et M. M. C. Ferreira, QSPR models of boiling point, octanol–water partition coefficient 

and retention time index of polycyclic aromatic hydrocarbons, Journal of Molecular Structure 
(Theochem) 663 (2003) 109–126. 

[7] F. Spafiu, A. Mischie, P. Ionita , A. Beteringhe, T. Constantinescu et A. T. Balaban , New alternatives for 
estimating the octanol/water partition coefficient and water solubility for volatile organic compounds 
using GLC data (Kovàts retention indices) 2009 (x) 174-194 . 

[8] R. P. Schwarzenbach, P.M. Gschwend et D. M. Imboden, 2nd. Enveronmmental organic Chemistry, John 
Wiley & Sons, Inc: New York, 2003. 

[9] J .Sangster, Wiley Series in Solution Chemistry, John Wiley & Sons: New York. 2 (1997). 
[10] A. C. Kokossis et Yang, Future system challenges in the design of renewable bio-energy systems and the 

systems of sustainable biorefineries. Design for Energy and Environment, 2009. 
[11] N. Chemmangattuvalappil, A Systematic Property Based Approach for Molecular Synthesis Using Higher 

Order Molecular Groups and Molecular Descriptors, Alabama, December 13, 2010. 
[12] L. B. Kier et L. H. Hall, Chemometrics Series, 9: Molecular Connectivity in Structure-Activity Analysis. 

New york: John Wiley & Sons, 1986. 
[13] Fengping Liu, Chenzhong Cao et Bin Cheng, A Quantitative Structure-Property Relationship (QSPR) 

Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure, Int. J. 
Mol. Sci. 12 (2011) 2448-2462. 

[14] A.R. Katritzky, R. Petrukhin et D. Tatham, Interpretation of quantitative structure-property and activity 
relationships, J. Chem. Inf. Comput. Sci. 41 (2001) 679–685. 

[15] A.R. Katritzky, D.A. Dobchev, S. Slavov et M. Karelson, Legitimate utilization of large descriptor pools for 
QSPR/QSAR models, J. Chem. Inf. Model. 48 (2008) 2207–2213. 

[16] E.J. Delgrado, J.B. Alderete et A.J. Gonzalo, A simple QSPR model for predicting soil sorption coefficients 
of polar and nonpolar organic compounds from molecular formula, J. Chem. Inf. Comput. Sci. 43(2003) 
1928–1932. 

[17] D.H. Laura, S.P. David, N. Florian et B.O. John, A study of QSPR models of solubility, melting point, and 
Log P, J. Chem. Inf. Model. 48(2008) 220–232. 

[18] D. A. Winkler, The role of quantitative structure - activity relationships (QSAR) in biomolecular 
discovery. Briefings in Bioinformatics, 3 (2002) 73-86. 

[19] M. T. D. Cronin, A. P. Worth, (Q) SARs for Predicting Effects Relating to Reproductive Toxicity. QSAR & 
Combinatorial Science, 27(2008) 91-100. 

[20] T. I. Netzeva, M. Pavan et A. P. Worth, Review of (Quantitative) Structure–Activity Relationships for 
Acute Aquatic Toxicity. QSAR & Combinatorial Science, 27 (2008) 77-90. 

[21] M. Grover, B. Singh, M. Bakshi et S. Singh, Quantitative structure-property relationships in 
pharmaceutical research - Part 1. Pharmaceutical Science & Technology Today, 3(2000a) 28-35. 

[22] M. Grover, B. Singh, M. Bakshi et S. Singh, Quantitative structure-property relationships in 
pharmaceutical research - Part 2. Pharmaceutical Science & Technology Today, 3(2000b) 50-57. 

[23] J. Dearden et A.Worth, In Silico Prediction of Physicochemical Properties: European Commission, Joint 
Research Centre. (2007). 

[24] A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson et I. Kahn, Quantitative Correlation of 
Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chemical Reviews, 110 
(2010) 5714-5789. 



     ISSN: 0975-8585 

May–June  2017  RJPBCS  8(3)  Page No. 1677 

[25] J. F. Faulon, D. P. Visco, Jr. et R. S. Pophale, The Signature Molecular Descriptor. 1. Extended Valence 
Sequences vs. Topological Indices in QSAR and QSPR studies, J. Chem. Inf. Comput. Sci., 43(2003) 707 – 
720. 

[26] D. Weis, J. L. Faulon, R. Le Bone et D. Visco, The Signature Molecular Descriptor. 5. The Design of 
Hydrofluoroether Foam Blowing Agents Using Inverse- QSAR, Ind. Eng. Chem. Res, 44 (2005) 8883-8891. 

[27] P. Donald, Jr Visco, R.S. Pophale, M. D. Rintoul et J. L. Faulon, Developing a methodology for an inverse 
quantitative structure-activity relationship using the signature molecular descriptor, Journal of 
Molecular Graphics and Modelling 20 (2002) 429–438. 


