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ABSTRACT 

 
Obstructive Sleep Apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular 

diseases. Snoring is a typical symptom of OSA patients. Although awareness of OSA disorders is increasing, 
limited information is available on whole night detection of snoring. Knowledge of the origin of obstruction 
and vibration within the upper airways is essential for a targeted surgical approach.   The major objective of 
this review paper is to study the details of several classifiers and feature selection methods which provide a 
robust, high performance, and sensitive whole-night snore detector based on non-contact technology. The 
major aim of this survey paper is to systematically compare different acoustic features, and classifiers for their 
performance in the classification of the excitation location of snore sounds. Here audio-based features 
extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic 
events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order 
to produce quantified measures for objective follow-up of patients. 
Keywords: Obstructive Sleep Apnea, Snore Sound Classification, Multi-Feature Analysis, Drug-Induced Sleep 
Endoscopy. 
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INTRODUCTION 
 

Partial or complete collapse of the upper airway during sleep has different effects on the human 
body, ranging from noisy breathing (simple snoring) to Obstructive Sleep Apnea (OSA), which can lead to 
considerable cardiovascular morbidity [1]. Snoring is the most common symptom of sleep-disordered 
breathing. By age 60, snoring adversely affects 60% of men and 40% of women. It is caused by the vibration of 
soft tissue in the upper airways involving anatomical structures such as the soft palate, uvula, and pharynx. 
The most common method for evaluating snoring history uses self-report questionnaires. The estimated 
prevalence of self-reported snoring in the general population extends over a wide range from 16% to 89% [2-
3]. This prevalence depends on awareness, age, culture, and partner complaints [4].  
 

Early work has shown a poor correlation between measured loudness of snoring and subjective 
appreciation by different observers. It was concluded that to a large extent snoring is ‘‘in the ear of the 
beholder’’ [4]. Thus, reliable snoring reporting cannot be made based solely on a patient’s (or partner’s) 
history of noisy respiration during sleep [5], or with sleep laboratory technician reports [4]. An additional 
limitation of questionnaires is that a large portion of the subjects respond that they ‘‘do not know’’ if they 
snore . To overcome these limitations, some clinicians ask the patient to supply an audio recording of their 
snoring, for example, prior to snore reduction surgery or to avoid operating on a ‘‘snorer’’ when in fact the 
problem lies with the bed partner being disturbed by essentially normal nocturnal breathing noise [1]. 
 

Polysomnography (PSG) is currently considered the gold standard for sleep evaluation [6]. This 
method requires a full night laboratory stay and subjects are connected to numerous electrodes and sensors, 
which are attached on the patient's body. Time series data are aggregated, processed, and visually examined 
or mathematically transformed in order to reveal insights about sleep-wake states and many aspects of 
physiology. Moreover, in routine sleep diagnostic procedures, sleep scoring is done manually by applying 
complex and visual scoring rules simultaneously on multiple signals acquired by applying contact sensors, e.g., 
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), electrocardiography 
(ECG), and respiratory activity [7].  
 

PSG is time-consuming, tedious, and costly due to complexity and the need for technical expertise. 
Currently, the biomedical engineering field of sleep disorders evaluation is on a “fast track” towards 
ambulatory sleep medicine [8]. In recent years, extensive effort has been devoted to seeking alternative 
simple cost-effective technologies for objective sleep-wake evaluation to increase accessibility in sleep 
disorders diagnosis. These new technologies are based on reduced channels and sensors, and sophisticated 
computer-based algorithms [9-10]. Under the assumption that movement is associated with wake phase and 
lack of movement implies a sleep phase, clinicians and researchers have attempted to measure the binary 
presence of sleep or wake phases by measuring wrist movements using actigraphy [10]. Field-based activity 
monitoring devices are increasingly used as simple and cheap accelerometer-based devices [11]. Montgomery-
Downs et al [12] recently reported that this new technology has specificity limitations similar to those of a 
traditional actigraphy device. These devices consistently misidentify wake as sleep and thus overestimate both 
sleep time and quality.  It was long established that central control of ventilation and upper airway patency are 
strongly affected by transitions from sleep to wake and vice versa [13]. 
 

Furthermore, in order to reliably evaluate the severity, ventilation and variability of an individual’s 
snore, the recording of an entire night is required. Hence, developing an automatic snore detection method to 
analyze fullnight recordings in a timely and accurate manner would be advantageous. A limited number of 
studies have addressed this issue of automatic detection and classification of snore signals, and even less is 
known about snore detection using ambient (non-contact) microphone technology. Several snore/non-snore 
classification methods have been suggested using different techniques to analyze snore sound events.  Some 
of them are discussed as follows: 
 

It was long established that central control of ventilation and upper airway patency are strongly 
affected by transitions from sleep to wake and vice versa [13]. During sleep, there is a considerable increase of 
upper airway resistance due to decreased activity of the pharyngeal dilator muscles [14]. This elevated 
resistance is reflected by amplification of airpressure oscillations in the upper airways during breathing. These 
air-pressure oscillations are perceived as breathing sounds during sleep [15]. In contrast, during wakefulness, 
there is an increase in activity of the upper airway dilating muscles, hence decreased upper airway resistance 
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and airway oscillations.  Also demonstrated that the audio signal can be acquired using a non-contact sensor 
(ambient microphone), which minimizes the interruption of sleep [16]. However, little is known about whether 
acoustic-breathing parameters can distinguish between sleep-wake patterns. 

 
RELATED WORK 

 
Some of the methods in the literature include pitch and formants, features regarding spectrum 

modeling such as Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive Coding (LPC) [17], and 
standard acoustic measures such as sound intensity [13]. Most of these studies were conducted without 
separate groups of subjects for their design and validation studies. Duckitt et al [18] recorded sound with an 
ambient microphone from 6 subjects that was segmented into snoring episodes, breathing, duvet noise, and 
silence periods using hidden Markov models and spectral-based features.  
 

Cavusoglu et al. [19] proposed a method for snore detection involving 15 subjects for both design and 
validation study using a linear regression fed by sub-band spectral energy distributions processed by principal 
component analysis. Karunajeewa et al [20] proposed a method for classifying snores and breathing sounds 
using the mean and covariance of four features extracted from time and spectral domains. Azarbarzin et al 
[21] proposed an unsupervised snore sound extractor based on a fuzzy C-means clustering algorithm and 
achieved higher accuracy using a tracheal microphone, due to a higher signal-to-noise ratio (SNR). 
 

Fewer studies exist on how to determine the location, and form of vibration and obstruction in the 
upper airway from the acoustic properties of snore sounds. Miyazaki et al [22] adopted fundamental 
frequency to distinguish SnS generated by soft palate, tonsils/tongue base, combined type such as both palate, 
and tonsils/tongue base, and the larynx. Based on the examination of 75 adult patients they concluded that, 
the average value of fundamental frequency was 102.8 Hz, 331.7 Hz, 115.7 Hz and around 250 Hz in the 
corresponding sites mentioned above, respectively. Hill et al. found the crest factor, the ratio of peak to root 
mean square value of a time-varying signal, to be significantly higher for palatal snorers (p<0:01, Student-t or 
Mann-Whitney tests) in 11 patients [23].   
 

Beeton et al proposed a combination of a 2-means clustering method and the statistical 
dimensionless moment coefficients of skewness and kurtosis to discriminate palatal, and non-palatal SnS 
collected from 15 patients [24]. They indicated that, the statistical moment coefficients demonstrate a method 
of measurement of the peakedness and symmetry of the impulse. 
 

In the recent some of the additional features such as CP, CC, and CI (collectively named “periodicity 
features”; see Methods) are strongly influenced by breathing properties, such as rate and consistency. It was 
well established that changes in vigilance states strongly affect breathing rate and regularity in humans and 
animals [25-26]. The snore-characteristics features are designed to find the probability of a given epoch to 
contain snores. The basic idea is that the probability of detecting snoring events is increased during sleep. 
Snoring is caused by the vibration of soft tissue in the upper airways due to elevated upper airway resistance 
during sleep.  
 

Recently, it was shown that snore analysis may carry valuable information about sleep conditions [27-
28]. In order to calculate these snore characteristics features used our high performance (>98% detection 
accuracy rate) snore detector module. By using all these (eight) features as a multi-dimensional input to our 
sleepwake classifier, the performances were superior to using each feature separately . AdaBoost [29] 
algorithm is used to classify epochs as sleep or wake. The main advantage of this algorithm is its ability to 
discriminate multi-dimensional complex-patterns using a nonparametric, non-linear boundary threshold [29]. 
The use of this kind of classifier was supported by an earlier study [30], which claimed that sleep and wake 
activity (using wrist-actigraph) should be discriminated using non-linear classifiers. In addition, other studies 
have shown that there is a strong correlation between the labels (sleep/wake) of adjacent (30 sec) epochs 
[31]. Therefore configured AdaBoost classifier as a time-series model, in which the prediction of each epoch 
state is influenced by the adjacent epochs, i.e., it is unlikely (though it's possible) to find a fragmented 
sequence of [wake-sleep-wake] and vice versa 
 

Most studies [32–33] have defined snores as acoustic events with sound intensity exceeding a certain 
amplitude value. Other studies have defined them as acoustic events that contain an oscillatory component 
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[32] and even as any sound perceived as such by the observer holding the microphone. Moreover, some 
studies have explored only selected snores (usually loud events) and did not analyze the whole sleep [34]. 
Since there is no unified approach to exactly define a snore, and it is more ‘‘in the ear of the beholder’’  
included every noisy inhalation sound made during sleep that was .20 dB, i.e., the minimum sensitivity of the 
recording device. 
 

Recently, this process was found to be beneficial in cases where the speech signal was contaminated 
with loud background noise. Lee et al [34] removed estimated background noise from an entire audio signal 
using a fixed filter. Their estimation was based on the spectrum from the initial ten minutes of the recording 
(empty room). This approach was better than most fixed noise reduction techniques (such as linear time 
invariant filter), but it did not follow the background noise properly through the night. To overcome the SNR 
challenge, some studies used a contact microphone, e.g., the tracheal microphone [35]; however, data were 
easily affected by a variety of noises such as cardiac and respiratory sounds and movements.  
 
INFERENCE FROM THE SURVEY  

 
In the recent work thin tube with multiple pressure sensors is introduced into the upper airway. The 

pattern of pressure changes during breathing of the different sensors allows a determination of the 
obstruction location during an apnoeic or hypopnoeic event. An advantage of this method is that, it can be 
used in natural sleep. However, the tube within the upper airway is not tolerated by every patient.  

 
Acoustic analysis could be an alternative to determine the vibration mechanisms within the upper 

airway, which is easier for doctors and patients. Fewer studies exist on how to determine the location, and 
form of vibration and obstruction in the upper airway  from the acoustic properties of snore sounds 

 
The studies mentioned above are focused on evaluating certain well-selected acoustic features for 

their sensitivity to the anatomical mechanisms of snoring sound generation or upper airway obstruction. The 
comparisons and results are based on statistical analysis, and basic signal observation. The application of 
multi-feature analysis have better solution for this application and  however, advanced signal processing 
methods, and machine learning models have been used for this purpose to increase higher accuracy. 
 

CONCLUSION AND FUTURE WORK 
 

This survey paper aimed to study and discuss the details of many snore detection classifiers using a 
noncontact technology. These classifiers are performed based on the signal enhancement and features 
extracted from different domains as they have complementary information about snore/non-snore 
discrimination.  It also concludes that the new simple classifiers and detection methods are needed in order to 
improve patient accessibility to sleep diagnosis; this in turn will reduce the cost of management and treatment  
and improve quality of life and health  to solve the issues of the existing methods. Moreover, this survey also 
includes comprehensive review of many classifiers and feature selection methods, the major issues of the 
existing work also discussed in this survey work.  The comparisons and results of various methods are based on 
statistical analysis, and basic signal observation. The application of multi-feature analysis have better solution 
for this application and  advanced signal processing methods, and machine learning models have been used for 
this purpose to increase higher accuracy is considered as scope of the future work. 
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