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ABSTRACT 

 
 The task of separated flow slit-shaped suction flue is solved with the help of usage the theory of 
functions of a complex variable and stromfadentheorie. Velocity diagram was formulated and streamline 
configuration was found. The received calculation results are compared with discrete vortex method, root-
finding algorithm, Reynolds-averaged Navier-Stokes, equation of continuity and experimental data. Then the 
conclusion about conformity and authenticity of received design quantity and velocity diagram is made up. The 
studies will be useful for specialists in the field of industrial ventilation and aerodynamics of separated flows. 
This study focuses on the numerical and experimental study of a separated flow at the inlet of a slot-type 
hooded suction inlet. Thus, the model of potential separated flows adequately describes most of the real 
suction flare of a flat slot. The behavior of the relative velocity of the jet separation is almost identical to the 
experimental law of change in the local drag coefficient depending on the length of the projections adjacent to 
the inlet. Horizontal shield length equal to half the width of the suction channel enables to reduce the flow of 
air entering into the suction channel due to effect separation of the jet. 
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INTRODUCTION 
 

The use of analytic functions theory has fruitfully effected on plane potential flows researches, 
especially in conformal reflections. The authors of the article were attracted by the classical problems of 
motion of the suction air flow in slotted holes both early and later works [1,2,3,4]. Intense interest in 
aerodynamics is appeared not only in practical value for applied problems of industrial ventilation [5,6,7,8] but 
also in dissatisfaction about the fact that in most cases, only simple mathematical models of are used in 
practical application. They give us quite good results in remote fields of suction jet.  
 

We consider that there is a little number of works devoted to research of the flows close to suction 
hole especially practical investigations and comparison their results with the theoretical ones. 

 
We think that it explains the lack of interest of practical men to the results of numerous researches of 

theoretical models. 
 

MATERIALS AND METHODS 
 

Assume that an infinitely wide horizontal pipe with a width 2В is projected to a distance S from the 
vertical wall. The pipe axis is directed along the axis OX of the physical plane of the complex variable z = x+iy. 

We will consider the upper part of the flow in the semi-plane y0. We will use the upper semi-plane of the 
complex variable t = x1+iy1 as a parametric one. The correspondence of the points in these ranges, as well as 

the ranges of the unknown quantities of the Joukowski function 
u

ω = ln + iθ
u

  and the complex potential 

function w = +i, are shown in Fig. 1. 
 
Here, u is the velocity value on the “free” flow line CD, u is also in the arbitrary points of the area under 

review in the quadrilateral АDCBA of the physical area Im(z)0. The quadrilateral has two vertexes at infinity: the 
point А, at which a line source with a strength q is placed and the point D, where a sink with the same strength is 
placed. 

 

Thus, the range of the complex potential is a band bounded by the flow lines  = 0,  = q and 

equipotential lines at infinity  =  and the range of the Joukowski function is a half-band with a cut along 

the ray MA( = -/2) bounded by horizontal lines  = 0 and  = - (is the angle between the positive axis OX 
and the direction of the velocity vector u ). 

 
Find a conformal mapping of the upper semi-plane Im(t)>0 onto the interior of the range ω (the 

interior of the pentagon ADCBMA with two vertexes at infinity). We use the Schwarz-Christoffel integral, after 
simple transformations taking into account the transition conditions of the singular points В and В on 

semicircles iα

bt = b + ε e  and  iα

α b at = 1+ ε e ε 0, ε 0, α = π..0  , as well, taking into account the 

correspondence of the points С and М, we find the desired Joukowski function: 

 

1 t + b t +1 t + b t +1
ω = ln × = ln ×

2 t - b t -1 t - b t -1

 
  
 

 (1) 

 

And define the parameter: 
 

1
4

1
4

1+ b
μ = ln

1- b
 (2) 

 
Using the same techniques, find the complex potential function: 

 

 
q

w = ln t -1
π

 (3) 

 
Describing the velocity field in the semi-plane Im(t)>0 that is induced by a line source at the point А. 
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Bearing in mind that: 

  

 

k

t
ω t

k

t

1 dw
z = e dt + z

u dt

  (4) 

And: 

 

 -ω tdw
v = = u e

dz
  (5) 

 

And if we use the functions found ω  and w  and take as a reference point C(tk = 0; zk = B.i), we obtain a 

parametric solution of the problem: 

 

 

T

3
2

0

δ t + b t +1
z = dt + i

π t - b t -1

   (6) 

 

x y

T - b T -1
v u - iu =

T + b T +1
   (7) 

 

Enabling to build a hydrodynamic grid ( = 0.1 = const;  = -..+ = const) and the velocity field: 

 

   x yu = Re v ; u = -Im v  (8) 

 
Hereinafter, the linear dimensions are related to the half-height of the slot B and the velocities to the 

velocity u; δ is the dimensionless half-height of the jet for t→ (at the point D), T = m+n.i is an arbitrary 
point of the upper semi-plane Im(t)>0 and a point of physical half-plane Im(z)>0 corresponding to it owing to 
(6), in which we define the velocity vector projection u . 

 

The maximum speed equal to (9) (due to the fact that at this point T b, b = 0..1 ) is seen at the 

point М on the ray ВА: 
 

1
4

M y 1
4

1- b
u = u = -

1+ b
 (9) 

 
It is easy to determine the position of this point in the physical plane: 

 

 

b-ε

M 3
2

0

δ t + b 1+ t
x = S = dt

π b - t 1- t

   (10) 

 

 

b

M 3
2

b+ε

δ t + b 1+ t
y = 1+ dt, ε 0

π b - t 1- t

     (11) 

 

We find the coordinates of the flow line CD to determine the half-height of the jet at infinity δ.  
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Fig.1. To the determination of the separated flow near a projecting suction slot 

 

Given that the points of this line correspond to the points on the negative semi-axis OX1 (-<t<0) 
based on (6) we can write the following system of equations:  

 

 
 

η

CD 1.5

0

ν - b dνδ
x =

π b + ν 1+ ν



  (12) 

 

 
 

η

CD 1.5

0

δ νdν
y = 1- 1+ b , 0 η < + ,

π b + ν 1+ ν

    (13) 

 
Describing the coordinates of the line CD in the upper semi-plane of the physical space. Given that yDC→δ 

for →, we have  
δ

δ =1- E b
π


  whence it follows: 

 

  δ = π / π +E b
 (14) 

 
where, E(b) is the number depending on the parameter b: 

   
 

1,5

0

νdν
E b = 1+ b

b + ν 1+ ν



  (15) 

 

Taking into account the result obtained based on (10) we can write the following relationship: 

 

   

b-ε

1.5

0

1 t + b 1+ t
S = dt

π + E b b - t 1- t
  (16) 

 

Connecting the length of the projection (hood) with the parameter b. 
In particular, for b = 0 we have: 
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 
 

1.5

0

dν π
E 0 = = 2;δ = ;S = 0;μ = 0

π + 21+ ν



  (17) 

 

i.e., the case of a separated air flow at the slot-type suction built into a flat unlimited wall. In this case, 
the relations to determine the velocity field as well as the coordinates of the free flow line CD are much 
simplified: 
 

 

 

T

1.5

0

1 t +1
x + y i = dt + i =

π + 2 t -1

2 1+ T
ln T -1 + T -

π + 2 T -1



 
 
  


 (18) 

 

x y

π + 2 T -1
u - iu =

π T +1
  (19) 

 

 CD

η2
x = ln η +1 + η -

π + 2 η +1

 
 
  

 (20) 

 

CD

2 π 1
y = + ;η = 0..

π + 2 2 η+1

 
 

  

 (21) 

 

For b = 1, we have another classic case of the separated air flow at the slot-type suction in infinite space:  

 

 
 

 

2

0

1

2

0

ν
E 1 = 2 dν = π, δ = 0.5

1+ ν

1 t +1
S = dt , μ

2π 1- t





 





 (22) 

 
Table 1. Main parameters of the separated flow at a projecting suction slot 

 

b E(b) S(b) δ(b) W(b) µ(b) µM yM 

0.00 2.000 0.0000 0.6110 1.637 0.0000 -1.00000 1.000 
0.02 2.240 0.0151 0.5838 1.713 0.4717 -0.45340 1.068 
0.04 2.325 0.0317 0.5747 1.740 0.5928 -0.38200 1.112 
0.06 2.386 0.0496 0.5684 1.759 06830.0000 -0.33790 1.153 
0.08 2.435 0.0689 0.5633 1.775 0.7589 -0.30560 1.193 
0.10 2.477 0.0894 0.5591 1.789 0.8263 -0.28010 1.232 
0.12 2.514 0.1114 0.5555 1.800 0.8881 -0.25900 1.272 
0.14 2.547 0.1348 0.5522 1.811 0.9460 -0.24090 1.313 
0.16 2.577 0.1597 0.5493 1.820 1.0010 -0.22510 1.354 
0.18 2.605 0.1863 0.5467 1.829 1.0540 -0.21110 1.397 
0.20 2.630 0.2146 0.5443 1.837 1.1050 -0.19850 1.441 
0.22 2.654 0.2448 0.5420 1.845 1.1550 -0.18700 1.486 
0.24 2.677 0.2770 0.5399 1.852 1.2040 -0.17650 1.534 
0.26 2.698 0.3114 0.5380 1.859 1.2520 -0.16680 1.583 
0.28 2.718 0.3481 0.5361 1.865 1.3000 -0.15780 1.635 
0.30 2.738 0.3874 0.5344 1.871 1.3470 -0.14940 1.689 
0.32 2.756 0.4294 0.5327 1.877 1.3950 -0.14150 1.746 
0.34 2.773 0.4744 0.5311 1.883 1.4420 -0.13400 1.806 
0.36 2.790 0.5228 0.5296 1.888 1.4900 -0.12700 1.870 
0.38 2.806 0.5747 0.5282 1.893 1.5380 -0.12040 1.937 
0.40 2.822 0.6307 0.5268 1.898 1.5860 -0.11400 2.008 
0.42 2.837 0.6910 0.5255 1.903 1.6350 -0.10800 2.084 
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0.44 2.852 0.7562 0.5242 1.908 1.6840 -0.10230 2.165 
0.46 2.866 0.8269 0.5230 1.912 1.7350 -0.09676 2.252 
0.48 2.879 0.9036 0.5218 1.917 1.7860 -0.09149 2.345 
0.50 2.893 0.9872 0.5206 1.921 1.8380 -0.08643 2.446 
0.52 2.905 1.0780 0.5195 1.925 1.8920 -0.08156 2.554 
0.54 2.918 1.1780 0.5185 1.929 1.9470 -0.07687 2.672 
0.56 2.930 1.2880 0.5174 1.933 2.0030 -0.07235 2.800 
0.58 2.942 1.4090 0.5164 1.936 2.0610 -0.06799 2.940 
0.60 2.954 1.5440 0.5154 1.940 2.1210 -0.06377 3.093 
0.62 2.965 1.6930 0.5145 1.944 2.1840 -0.05968 3.263 
0.64 2.976 1.8600 0.5135 1.947 2.2480 -0.05573 3.451 
0.66 2.987 2.0480 0.5126 1.951 2.3160 -0.05189 3.661 
0.70 3.008 2.5040 0.5109 1.957 2.4610 -0.04455 4.164 
0.74 3.028 3.1080 0.5092 1.964 2.6240 -0.03762 4.820 
0.76 3.037 3.4890 0.5084 1.967 2.7130 -0.03429 5.230 
0.80 3.056 4.4890 0.5069 1.973 2.9140 -0.02789 6.294 
0.84 3.075 6.0080 0.5054 1.979 3.1550 -0.02179 7.888 
0.88 3.092 8.5630 0.5040 
1.984
 3.4590 -0.01598 10.54 

 

 
1 T

x + y i = ln T -1 -
π T -1

 
  

  
 (23) 

 

x y

1 T -1
u - iu =

2 T +1
  (24) 

 

CD

1 η
x = ln 1+ η -

π η +1

 
 
 

 (25) 

CD

η1
y = π - arctg η + , η = 0..

π η +1

 
 

 
 

  (26) 

 
For the general case of (b = 0..1;S = 0..) based on the numerical solution of equations (15), (16), (11) 

and calculations by (2), (9), (14), the parameters of the problem are given in Table 1. 
 

There can be some difficulties in constructing a hydrodynamic grid (a family of orthogonal curves  = 

const;  = const) and determining the velocity field that are related to finding the integral (6) which is not 
expressed in terms of elementary functions (it can only be reduced to the sum of elliptic integrals). 

 

In this case, we can use numerical methods, assuming that the constants δ and b are known for 

a given S (for example, they can be taken from Table 1 or from the solution of (16) and δ can be 
calculated by the formula (14). 

 
After the integrand is divided by the real and imaginary parts, the integral (6) is reduced to a sum of 

contour integrals. In this case, we use the analytic property of the integrand enabling the arbitrary choice of the 
integration path between the points С(0, 0) and Т(m; n). The best option is to integrate first in a circumferential 
direction (centered at t = 1) with a radius r = 1 from the point С to the intersection with the ray AT and then along 
this ray from the intersection point to the preset point Т. 

 
RESULTS 

 
Four vertical sections of the jet in the suction slot (located at x/B = 0.05; 0.3; 0.55 and 0.8 from the 

input section, respectively) and three horizontal sections were selected as typical sections: under (y/B = 0.8), at 
a level (y/B = 1) of and above (y/B = 1.2) the hood. With a measurement pitch of 0.1В, the horizontal 
component of the velocity vector ux was measured in the first case and the vertical one uy in the second case. 
The results are shown in Fig. 2 and 3. Here the solid lines show the calculation results in Maple-9 using (6) and 

(7) for S/B = 1,0 (b = 0.50286, δ = 0.520474).  



  ISSN: 0975-8585 

May – June  2016  RJPBCS   7(3)  Page No. 2494 

For comparison we also show the velocity profiles obtained by the Discrete Vortex Methods (DVM) 
and by solving the time-averaged Reynolds-Averaged Navier-Stokes equation (RANS) in the Fluent software. As 
can be seen from these results, the theoretical description of the velocity field with models of separated flows 
presents a practically sufficiently accurate description of the behavior of the velocity components, except for 
the areas near the jet separation and on its free boundary (CD). Here, we have a fully developed turbulence; 
and due to this, the potentiality of the flow seems to be violated. For example, in the vertical sections of the 
channel near the line CD (Fig. 2), a well-pronounced boundary mixing layer is seen with a sharp change in the 
horizontal component of velocity and a significant deviation of the experimental values from the theoretical 
ones with an increase in the distance of the metering sections from the air inlet into the channel. The 
theoretical value ux exceeds the empirical one due to the fact that the true thickness is higher than the 
theoretical one δ. The dead zone (between CB and CD) is filled with a moving stream, although its velocities 
are low. Naturally, the velocity within the theoretical jet separation will be lower in this case. 

 

 
 

a) 
 

 
 

Fig.2. Measurement of the longitudinal air velocity through the entire height of the flat channel equipped with a hood of a unit 
length 

 

 
 
 

Fig.3. Change in the vertical velocity component near the inlet of the hooded suction slot (CB) of unit length; on the 
orthographic representations, solid lines are theoretical values; circles, diamonds, squares are e[perimental values; I,II,III 

are the velocity profiles in the cross sections y/B = 0.8; 1; 1.2, respectively) 

 
As to the qualitative description, the experimental data are in good agreement with the theoretical 

values. The longitudinal velocities increase in each section towards the boundary CD, the peak area (similar to 
the line CD) becomes more distant from the hood. The dead zone is filled with a flow whose velocity is 
significantly lower than the velocity within the range of the jet (between the lines CD and AD).   
 

In horizontal sections, the greatest deviation from the theoretical values is also observed near the 
separation point, although the qualitative character of the change in the vertical component of velocity is in 
good agreement with the experimental values: the highest value uy both in the experimental studies and the 
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theoretical ones by the CM  method and DVM [2,3,9,10,11,12] is seen near the point С (Fig. 3). The more 
distant it is from the point C, the closer the value of the measured uy is to the theoretically calculated one. At a 
distance 0.5..0.8В, the deviations will not interrupt the measurement errors. Note that the RANS method gives 
values close to 0 in the range С. 

 
Thus, the model of potential separated flows can be deemed to adequately describe the nature of the 

flows almost in the whole area of the suction flare. Some convention in the existence of a “break” of flows on the 

free boundary CD does not prevent the widespread use of jet contraction (namely δ) in practical determination 
of the pressure losses. The main cause of energy losses during the inlet into the inlets is undoubtedly the gating 
effect of the flow which is separated from the walls adjacent to this inlet. The longer is the length of these walls 
(hoods, projections), the greater is the separation velocity the higher is the strength of the flow flowing to the 
inlet and, consequently, the higher are pressure losses. 

 
DISCUSSION 

 

We show this by two specific examples: air inlet into a flat pipe and its out flow from a flat pipe 

through the diaphragm. These examples have been chosen due to the availability of the experimental 

data obtained by [13]. 

 

We will use the difference in velocities on a free surface (separation velocity) and the average velocity 

in the slotted opening to describe the value of inertia: 
  

* * *
щ

* *

щ щ

u - u u 1
Δu = w(b) -1;w(b) = =

u u δ (b)

 



  

 

 
Fig.4. Change in the local drag coefficient at the inlet into the flat pipe () and the jet separation velocity (u) with 

increasing in the projection length (S/4B): The solid line is based on theoretical data (Table 1), dashed ones on 

experimental data by I.E. Idelchik (Curve 1 for the relative wall thickness of, Curve 2 for δ/D = 0.004) 

 

 
 

Fig.5. Change in the local drag coefficient at the inlet into the flat pipe () and the jet separation velocity (u) with 
increasing in the projection length (S/B): The solid curve based on equations (27) and (28), the dotted one represents 

the experimental data by I.E. Idelchik 
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We use the data from Table 1 to determine the theoretical coefficient of jet contraction * *δ = δ / B 

(the values * *δ , B
 are dimensional, which is shown by the superscript *) for an inlet into a flat pipe; and we 

use the results of theoretical studies by Zhukovsky and R. von Mises described in [14,15] to assess the degree 
of flow contraction in the outflow through the diaphragm: 

 
* *

* *

δ π B tgα
δ = ;n =

2αB L δ
π + 2

tg2α






   

 

Whence: 
 

* *S S / B =1/ n -1= δ / tgα -1  

 
a/4. The latter can be eliminated, allowing for a 

direct connection between δ and n (or S) in the form of a transcendental equation: 

 

δ = π / (π +2 A)   (27) 

 

where, A = An is the function of δ and n:  

 

   nA = 1/ nδ - nδ arctg nδ    

or of δ and S: 
 

S

S +1 δ δ
A = A = - arctg

δ S+1 S+1

 



   
   

  
 (28) 

 

It is easy to see that for S = 0 (n = 1), the coefficient of contraction is δ = 1 (no contraction occurs) 

and for S→(n = 0) the function A = 1, δ = 0.611 (the outflow through holes in an infinite wall). 
 

As can be seen from Fig. 4 and 5, the relative separation velocity u is increasing with an increase in 
the length of a straight wall before the outflow of the jet; and the nature of this increase corresponds with the 
change in the local drag coefficient.  

 
CONCLUSION 

 
Thus, the model of potential separated flows adequately describes most of the real suction flare of a 

flat slot. Significant deviations of the theoretical velocity field from the experimental one are only seen in the 
jet separation area and on its free boundary. A developed boundary layer with a great transverse gradient of 
the longitudinal velocities is seen along the free boundary of the jet in the channel. 
 

The degree of the cross section jet contraction in a channel is determined by the inertia of the airflow 
flowing along flat surfaces at the inlet into the suction slot. The bigger is the acceleration path of this flow, the 
higher is the rate of its separation and the more pronounced is the gating effect at the air inlet into the inlet. 
The behavior of the relative velocity of the jet separation is almost identical to the experimental law of change 
in the local drag coefficient depending on the length of the projections adjacent to the inlet. 

 
Note that in this study used the methods of the theory of functions of a complex variable. Using such 

methods ensures the most accurate results. There is an analytical solution obtained in some of the simplest 
cases. The problem often resolves oneself into quite lengthy non-linear equations with coefficients of 
unknown variables in the form of Cauchy type integrals. In the general case when a multiply connected flow 
region or, all the more, a three-dimensional space is considered solving the problems using the methods above 
is impossible. This drawback can be removed in the future, using the method of discrete vortices. In what is 
supposed to use this method for the study of separated flows at the inlet to the suction channels with a few 



  ISSN: 0975-8585 

May – June  2016  RJPBCS   7(3)  Page No. 2497 

thin visors. The results will be useful to reduce the amount of air entering the slit nondensity aspirating 
shelters.  
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