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ABSTRACT 

 
Sequential data analysis is one of the vital research area. Several data mining techniques like classification, 

association, predictions   can   be applied in sequential data. Clustering is a challenging task in the field of machine learning, 
pattern recognition and web mining. Clustering is the process of grouping data based on some similarities but applying 
clustering approach in sequential data should focus on order as well as the content of sequence similarity. Rough set 
theory is one of the   efficient soft computing techniques used in clustering  which help researchers to discover overlapping 
clusters in many applications such as web mining and text mining. The rough set   which holds equivalence relation is very 
rigid as it doesn’t support incomplete information system. This leads the theory’s application to a certain extent. Hence 
covering based rough set is introduced where the partitions of a universe are replaced by covers. Different    types of   
covering based rough set theory   exist in the literature. In this paper all three types covering rough sets is investigated and 
produced a  comparative study of first type, second type, and third type covering based rough clustering algorithm for 
sequential data. 
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INTRODUCTION 
 
Data plays a significant role in the today scenario. We can identify vagueness, incompleteness, and 

granularity in an   information systems as the data are collected using sensors, cameras and smart devices. This 
leads in production of   unreliable solution in the data analysis. Managing these data is a challenging task for 
the users as well as researchers. An innovative technique into the field of uncertainty and knowledge discovery 
is based on Rough set theory, which provides a framework for the representation of uncertainty. Broadly we 
classify Clustering algorithms based on its various important issues such as algorithmic structure, nature of 
clusters formed, use of feature sets, etc. [4].In this paper its focused on hierarchical algorithms where it 
doesn’t require the number of clusters, k, as an input parameter. However, a termination condition has to be 
defined indicating when the merger or division process should end. Finding an efficient termination condition 
for the merging or division process is still an open research problem [21].Clustering approaches can be 
classified into two types one is hard clustering which is our  conventional clustering method where the objects 
that are similar will form in one cluster and dissimilar will be in other cluster. They are disjoint in nature.  In 
soft clustering, an object may be a member of two or more clusters. Soft clusters usually have   fuzzy or rough 
boundaries [20]. In fuzzy clustering, each object is characterized by partial membership whereas in rough 
clustering objects are characterized using the concept of a boundary region. The main features of rough set is 
unlike other techniques, rough set theory does not require any prior information about the data such as apriori 
probability in statistics and a membership function in fuzzy set theory. The classical rough set theory is based 
on equivalence relations, but this requirement is not satisfied in some situations of real world data. 

 
Rough set theory is a valuable tool for data mining. In the past few years the concept of basic rough 

sets has been extended in many different directions. The original rough set theory proposed by Pawlak [1,2] is 
based upon equivalence relations defined over a universe. It is the simplest formalization of indiscernibility. 
However, it cannot deal with a number of granularity problems in real information systems which has directed   
to numerous significant and motivating extensions of the original concept. Generalization of rough set theory 
can be followed by several approaches like set-theoretical frame work, covering based rough set and 
subsystem  based methods. One of the most recent generalizations is the notion of covering based rough sets, 
introduced by Zakowski [3].A cover is a generalization of the notion of partition. The covering based rough sets 
are models with promising potential for applications to data mining. Several properties of the different types 
of covering based rough sets have been derived by different researchers [5, 6, 7].  
 

This paper focuses on comparative study of various types of covering based rough set approach in 
clustering sequential data. The remainder of this paper is organized as follows. The related work is discussed in 
section2. Section 3 defines the fundamental concepts and properties of rough set theory and section 4 defines 
all three types of  covering based rough set theory. In Section 5, Covering based   rough set clustering for 
sequential data is presented and compared with various types of covering based rough set. This paper 
concludes with future work  in section 6. 
 

RELATED WORK 
 

Most of our traditional tools for formal modelling, reasoning and computing are crisp, deterministic 
and precise in character. Real situations are very often not crisp and deterministic and they cannot be 
described precisely. Rough Sets, introduced by Pawlak [1,2] has been found to be an excellent tool to model 
and study impreciseness in data. A rough set[3]  is represented by a pair of crisp sets, called the lower and 
upper approximations of the set. The lower approximation of a rough set comprises of those elements of the 
universe, which can be said to belong to it definitely and the upper approximation comprises of those 
elements which are possibly in the set with respect to the available knowledge. Three types of rough or 
approximate equalities have been introduced by Novotny and Pawlak [9, 10, and 11]. The concepts of 
approximate equalities of sets refer to the topological structure of the compared sets but not the elements 
they consist of. Thus sets having significantly different elements may be rough equal. 
 

Due to restriction in equivalence relation, application of rough set over different type of problems 
seems difficult, unless the clustering of problem appears to hold true for equivalence relation. The equivalence 
relations of rough sets were extended to generalized binary relations in several directions. Similarly, partition 
of universe in rough sets was extended to a covering [13]. The covering based rough sets are models with 
promising potential for applications to data mining. Like rough set theory   Uncertainty characterization of 
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covering in the covering approximation space, similarity measure between two covering rough sets and two 
generalized covering-based rough set models [14] and their properties and applications were presented. A 
framework for the study of covering based rough set approximations [15] was proposed. Three equivalent 
formulations of the classical rough sets are examined by using equivalence relations, partitions, and σ-
algebras, respectively. A type of generalized rough sets based on covering and the relationship between this 
type of covering- based rough sets and the generalized rough sets based on binary relation [16] were studied. 
 

In some areas, like biology, logs analysis, anomaly detection, natural language processing and 
telecommunications, data can be seen in the form of sequences. Various approaches were available for 
dealing with comparing sequential data especially sequential patterns. The two main similarity measures used 
for item set sequences are Edit distance and LCS [17]. The Edit distance was used for extracting sequential 
patterns under similarity constraints. Edit distance is not adaptable to the various definitions of similarity. 
Since Edit distance’s operators are applied on the elements of sequence (i.e. item sets), an item set in a 
sequential pattern is reduced to an event type. Hence, a sequential pattern is treated as an event type 
sequence. The LCS measure (Longest Common Subsequence) is used for the comparison of sequences. The LCS 
gives the length of the longest common subsequence of two sequences. It is possible to use LCS to compare 
the similarity of sequential patterns without being optimal. We note three reasons why the LCS is not a 
optimal measure for sequential patterns (itemset sequences). Firstly, LCS does not take the position of 
itemsets (in order of sequence) into account in the two sequences. Secondly, LCS does not consider the length 
of the part which is not common. Thirdly, the number of different items in itemsets (in which the subsequence 
appears) does not affect the value of LCS. A S2MP (Similarity Measure for Sequential Patterns) similarity 
measure [17]was defined for computing the similarity between of sequential patterns. which takes the 
characteristics and the semantics of sequential patterns into account. This measure compares two sequential 
patterns both at the level of item sets and their positions in the sequences and also at the level of items in 
item sets. 
 

Clustering algorithms have been classified using different taxonomies based on various important 
issues such as algorithmic structure, nature of clusters formed, use of feature sets, etc[19] . Clusters can be 
hard or soft in nature. In conventional clustering, objects that are similar are allocated to the same cluster 
while objects that differ significantly are put in different clusters. These clusters are disjoint and are called hard 
clusters. In soft clustering [20], an object may be a member of two or more clusters. Soft clusters may have 
fuzzy or rough boundaries. A rough cluster is defined in a similar manner to a rough set. The lower 
approximation of a rough cluster contains objects that only belong to that cluster. The upper approximation of 
a rough cluster contains objects in the cluster which are also members of other clusters. The advantage of 
using rough sets is that, unlike other techniques, rough set theory does not require any prior information 
about the data such as apriori probability in statistics and a membership function in fuzzy set theory. Joshi and 
Krishnapuram [21] argued that the clustering operation in many applications involves modeling an unknown 
number of overlapping sets, that is, the clusters do not necessarily have crisp boundaries. Web mining is one 
such area where overlapping clusters are required. Generally, clustering algorithms make use of either 
distance functions or similarity functions for comparing pairs of sequences [18]. Many of the metrics for 
sequences do not fully qualify as being metrics due to one or more reasons. 
 
Basic Concepts of Rough Set Theory 
  
Definition 1: Rough set: 
 

Let U be the universe and let UUR   be an equivalence relation on U, called an indiscernibility 

relation. The pair ),( RUA   is called an approximation space. The lower and upper approximation of set X 

with respect to R can be written as 
 

  }:{)( XxUxXR R   

 ( ) { : }
R

R X x U x X   
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Where 
  }|{ xRyUyx R   is the equivalence class of x. if   Xx R  ,  Then it is certain that .Xx if 

  Xx R  - )(XR  then it is clear that .Xx    Xx R   is called rough with respect to R iff 

XRXR )( .Otherwise X is R-discernible. figure:1 shows all the approximation space of rough sets 

 
 

 
 

Figure.1 Approximation space of rough sets 

 
Rough approximation satisfies the following properties 
 
 R∗(X) ⊆ X ⊆ R∗(X),  
R∗(∅) = R∗(∅) = ∅;R∗(U) = R∗(U) = U, 
R∗(X ∪ Y) = R∗(X) ∪ R∗(Y ), 
R∗(X ∩ Y ) = R∗(X) ∩ R∗(Y ), 
R∗(X ∪ Y ) ⊇ R∗(X) ∪ R∗(Y ), 
R∗(X ∩ Y ) ⊆ R∗(X) ∩ R∗(Y ), 
X ⊆ Y → R∗(X) ⊆ R∗(Y )&R∗(X) ⊆ R∗(Y ), 
R∗(−X) = −R∗(X), 
R∗(−X) = −R∗(X), 
R∗R∗(X) = R∗R∗(X) = R∗(X), 
R∗R∗(X) = R∗R∗(X) = R∗(X). 
 

A rough cluster is defined in a similar manner to a rough set that is with a lower and upper 
approximation. The lower approximation of a rough cluster contains objects that only belong to that cluster. 
The upper approximation of a rough cluster contains objects in the cluster which are also members of other 
clusters. 
 
Covering Based Rough Set Theory 
 

According to Hu, Lin and Han [23], Rough sets theory uses the strict set inclusion definition to define 
the lower approximation, which does not consider the statistical distribution/noise of the data in the 
equivalence class This drawback of the original rough set model has limited its applications in domains where 
data tends to be noisy or dirty. The other drawback of rough set theory is the inefficiency in computation, 
which limits its suitability for large data sets in real-world applications. This has direct to numerous significant 
and motivating extensions of the original concept. One of the most recent generalizations is the notion of 
covering based rough sets, introduced by Zakowski.A cover is a generalization of the notion of partition. The 
covering based rough sets are models with promising potential for applications to data mining. 
 

In recent past W. Zhu and F.Y. Wang have proposed four types of covering rough sets in which only 
one lower approximation and four different versions of upper approximations for such rough sets, several 
properties of these different types of covering rough sets are derived and analysed [13]. Covering based rough 
set extends a partition in rough sets to covering of the universe. A covering does not result from a rigid 
equivalence relation. Again, it enlarges the boundary set between lower and upper approximation. When 
compared, covering was observed to be more consistent with reality than partition for analysing and clustering 
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objects. There exist six types of covering based rough sets [15]. The lower approximation for covering based 
rough set for first, second, third, fourth and fifth type are same, whereas the upper approximations are 
different. The upper approximation for fifth type of covering based rough set is defined using the definition of 
covering with respect to neighbourhood. For sixth type of covering, both the approximation are defined over 
the property of covering with respect to neighbourhood The definitions and types of covering based rough set, 
are as follows  
 
Relationship between Three Types of Covering Based Rough Sets 
 

 Let U be a universe of discourse, }|{ UXXC   a family of subsets of U, If no element of C is 

empty, and ,X C X U  then C is called a covering of U. The ordered pair (U,C) a covering approximation 

space(14). 
 It is clear that a partition of U is certainly a covering of U, so the concept of covering is an extension of the 
concept of a partition. 
 

Definition 2: Let (U,C) be a covering approximation space, Ux , then set family is called the minimal 

description of x. 
 

)}(|{)( SKKSSxCSKxCKxMd   

 
Definition 3:First Type covering based rough sets 
 

1( ) { | }C X K C K X     

1( ) 1( ) ( { ( ) | 1( )})C X C X Md x x X C X    

 
Definition 4: Second Type covering based rough sets 
 

Let(U,C) be a covering approximation space. For any UX  , the lower and upper approximations 

of X with respect to covering approximation space(U,C) are defined as follows: 
 

2( ) { | ( ( )) }C X x U Md x X    

 

2( ) { | ( ( )) }C X x U Md x X     

 

If 2( )C X  2( )C X , then X is said to be exact with respect to covering approximation space(U,C). 

Otherwise X is said to be covering rough set with respect to (U,C). 
 
Definition 5: Third Type covering based rough sets 
 

3( ) { | }C X K C K X    

3( ) { ( ) | }C X Md x x X   

 
 Since user behaviour analysis is one of the important applications in clustering sequential data. Based 

on the above definitions First type, second type and third type covering based rough sets are applied in the 
application and experimented the results with msnbc web data. 
 
Covering Based Rough Set Clustering  
 

Vagueness in data has attracted mathematicians, philosophers, logicians and recently computer 
scientists. Rough set theory is an approach to deal with vagueness. In many data mining applications, the class 
attributes of most objects are not distinct but vague. Rough set theory is applied in various clustering 
algorithm . A tolerance based rough set model has been considered for document clustering and information 
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retrieval. In general, similarity relations do not give the same kind of partitions of the universe as the 
indiscernibility relation. Similarity classes of each object x present in the universe U provide the similarity 
information for the object. An object from one similarity class may be similar to objects from other similarity 
classes. Therefore the basic granule of knowledge is intermixed. Extending indiscernibility to similarity relation 
requires weakening of some of the properties of binary relations in terms of reflexivity, symmetry and 
transitivity [24]. 
 

Definitions of lower and upper approximations of a set can now be easily formulated using tolerance 
classes. In order to do this, we substitute tolerance classes for indiscernibility classes in the basic definition of 
lower and upper approximations of set. Thus, the tolerance approximations of a given subset X of the universe 
U is defined as in definition 6. 
 

Definition 6:  Let UX  and a binary tolerance relation R is defined on U. The lower approximation of X, 

denoted by R  X and the upper approximation of X denoted by R  X  are respectively defined as follows:
 

 

R      XxRXxX  ,  
and  

R  X =  
Xx

xR
  

 
In this paper a comparative study is made on sequential clustering algorithm using covering based rough 
sets for clustering web user transactions.  
 

Let Uxi   be a user transaction consisting of sequence of web page visits. For clustering user 

transactions, initially each transaction is taken as a single cluster. Let the i
th

 cluster be { }i iCl x . Clearly, 

iCl is a subset of U. The covering based upper approximation of iCl , denoted as ( )iClR C ,is a set of 

transactions similar to ix , that is, a user visiting the web pages in ix  may also visit other web pages present in 

the transactions belonging to ( )iClR C . 

 

For any non-negative threshold value ]1,0[  and for any two objects Uyx , , a binary relation 

 on U denoted as yx  is defined by yx  iff ),( yxSim . This relation R is a tolerance relation and R 

is both reflexive and symmetric but transitivity may not always hold. 
 

The first upper approximation ( )iClR x  is a set of objects that are most similar to ix . Thus, first 

upper approximation of an object ix  can be defined as follows: 

 

Definition 7:  For a given non-negative threshold value  1,0  and a set  nxxxX ,,,,, 21 , UX  the 

first upper approximation is  
 

     | ,i j i jClR x x Sim x x  
 

 
Some sets in the collection resulting from the first upper approximation may share elements (the so 

called boundary elements). The boundary elements can guide the clustering process. The shared elements, 
generated after first upper approximation, may be the potential candidate of the new collection formed in the 
second or higher upper approximations. This can be decided by calculating the strength of shared element to 
all the clusters it belong.This is measured using a parameter called relative similarity. The value of the second 
and the higher similarity upper approximations is computed under the condition of relative similarity. For two 

intersecting sets UYX ,   
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The relative similarity of X with respect to Y is given by 
 

 
   

   
Re ,

i j

i j

i j

ClR x ClR x
lSim x x

ClR x ClR x



 

 

Where     ClR X ClR Y
 

 
The relative similarity defined above, measures the ratio of size of the shared boundary between two 

sets and the number of elements that exclusively belong to the set under consideration. The subtraction of 
two sets may be zero hence the relative similarity may attain the indefinite value. Hence, to have the definite 
value of relative similarity in the positive real number domain, the first set should not be proper subset of the 
second while computing the relative similarity between two sets. 
 

Table 1.Proposed relative similarity measures 

 

 
The relative similarity is proposed for all three types of covering based rough sets as shown in table1 

and forwarded to the constraint similarity upper approximation. 
 

Now we define the proposed constrained-similarity upper approximation in the following definition: 
 

Definition 8: Let 
 nxxxX ,,,,, 21 , UX  . For a fixed non-negative value  1,0 ,   the constrained 

similarity upper approximation of ix
 is given by 

 

   
 

 |Re1 ,

l i

i j l i j

x CR x

ClRR x x ClR x Sim x x 


  
   

 

. 

 

In other words, all the sequences ix  which belong to the similarity upper approximations of elements 

of )( ixCR that are relatively similar to ix  are constrained (or merged) into the next similarity upper 

approximation of ix . 

 
We repeat the process of computing successive constrained-similarity upper approximations for a 

given   until two consecutive constrained-similarity upper approximations remain the same. Here,   is a 

user-defined parameter called relative similarity, used to merge two upper approximations for the formation 

of the second and higher upper approximations.   is a user defined threshold parameter use to define the 

Type of Covering based rough 
set 

Proposed relative similarity measure Percentage of shared 
boundary 

First type covering based rough 
set 

 
   

   
Re ,

i j

i j

i j

FCR x FCR x
lSim x x

FCR x FCR x





 

75% 

Second type covering based 
rough set 

 
   

   
Re ,

i j

i j

i j

SCR x SCR x
lSim x x

SCR x SCR x





 

90% 

Third type covering based 
rough set 

 
   

   
Re ,

i j

i j

i j

TCR x TCR x
lSim x x

TCR x TCR x





 

80% 
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similarity between two objects and is utilized to find the first upper approximation. The constrained-similarity 
upper approximation is computed for all transactions of U.  
                                        

Experiments were performed on msnbc.com UCI dataset repository to check the performance of 
various types of covering based clustering algorithm. We recorded both the number of overlapping clusters as 
well as the time taken to execute the program on various sample of randomly selected data sequences. The 
relative similarity measures of  first type,second type and third type covering based rough sets was identified 
and processed . Also we recorded the overlapping of clusters produced by all three types of covering based 
rough set. It was observed that compare than all three types covering based rough set approach second type 
covering based   rough set gives a better result. 
 

Table2.Overlapping Percentage of clusters for various types of covering based rough set 

 
S.No Type of covering based rough set theory Overlapping clusters in percentage 

1 First type  covering based rough set 60% 

2 Second type covering based rough set 90% 

3 Third type covering based rough set 70% 

 
It was observed that the numbers of clusters are minimum in covering based rough sequential 

clustering than rough set sequential clustering since overlapping is increasing in second type covering based 
rough set as shown in table 2. 
 

CONCLUSIONS AND FUTURE WORK 
 

In this paper, we studied the concept of   covering based rough sets to cluster objects using the notion 
of similarity upper approximations. Usually, the clusters resulting from the web usage mining algorithms may 
not necessarily have crisp boundaries, rather they have fuzzy or rough boundaries [4].This paper results in   
comparison of all three types covering based rough clusters and the experiments on user navigation data 
which produces meaningful clusters that enable discovering of navigation patterns. Covering based Rough 
clusters are helpful to get early warnings of potentially significant changes in the clustering patterns. We 
experimented various types of covering based rough set clustering  on a web navigation dataset collected from 
the UCI dataset repository .We observed that second type covering based provides good overlapping cluster 
than first and third type covers.  
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