

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Elaboration of Subsurface Irrigation Technique of Onions.

Nurlan N. Balgabayev*, Alexander A. Kalashnikov, and Aigul E. Baizakova.

Kazakh Scientific Research Institute of Water Economy, LLP, 12, Koigeldy Str., Taraz 080003, Republic of Kazakhstan

ABSTRACT

At the present time, the increasingly growing deficiency of water resources requires application of new water-saving irrigation techniques allowing the most productive use of irrigation water and achieving maximum yield while using the minimum amount of irrigation water. Therefore, the development of subsurface irrigation of vegetable crops is main objective of the current research. Subsurface irrigation is one of the promising water-saving irrigation technologies of agricultural crops that previously has not been used in the Republic of Kazakhstan. Elaboration of subsurface irrigation technology of onion was carried out in comparison with the onion cultivation technology at drip irrigation and furrow irrigation. To save water at optimal watering and nutrition regimes, the subsoil irrigation of plants was carried out through porous water-conducting hoses produced by "Kazkauchuk" LLP (Kyzylorda). The article presents the research results on subsurface irrigation of bulb onions. The growth and development phases of "Manas" variety onions were determined at subsurface, drip, and furrow irrigations. Besides, the authors have further developed subsurface irrigation regime with regard to bulb onions cultivation, determining the actual yield and the water-use ratio of cultivated crops. The analysis of the water use supplied in various test options showed that the lowest irrigation rate was observed when carrying out subsurface irrigation.

Keywords: irrigation techniques, subsurface irrigation, watering, water use, porous water-conducting hoses, water-use ratio.

*Corresponding author

March – April

INTRODUCTION

Worldwide, irrigated agriculture is one of the main factors ensuring the sustainability of agricultural production and food security. The irrigation development helps to ensure the guaranteed volumes of production, reduce economic risk associated with crop losses due to the instability of weather conditions, create jobs for the rural population, and improve populated localities as well as contribute to number of other factors providing the growth in the living standard.

Analysis of the applied technologies and technical means of irrigation in the world (1, 2, 3, 4, 5, 6, 7) leads to the conclusion that drip, subsurface, and sprinkler irrigations are the most acceptable techniques in terms of water and energy saving. At that, drip irrigation and subsurface irrigation, as compared with sprinkler irrigation, have a distinct advantage because of the lower overall water use and energy consumption per unit of produced agricultural product, and can be recommended for countries with lack of irrigation water (Asia, Africa), where surface irrigation is the main watering technique.

One of the promising resource-saving irrigation techniques is subsurface irrigation, which consists in supplying water directly to the zone of plant root system through special subsurface moisturizers, making it possible to maintain constant humidity level in the active layer of the soil and prevent it from significant fluctuations. This technique provides soil aeration and does not prevent from carrying out mechanized works (8, 9, 10).

TECHNIQUE

The main parameters and elements of subsurface irrigation technique include the following: depth of humidifiers (0.05-0.6 m); the pressure head in the humidifiers (0.2-0.5 m); specific flow rate of liquid in humidifiers (0.02-0.33 l/s per 100 m of length); the total length of the humidifiers (50-250 m); the distance between the humidifiers or wetting zones (0.3-3.5 m for systems without a natural confining layer); and the duration of irrigation. In Russia, subsurface irrigation is carried out employing capillary irrigation method, in which vessels, situated below the soil surface and connected with surface lines, deliver water to the plants' root system from the bottom holes arranged with a capillary clearance above the bowl-shaped vessel. This technical solution allows excluding the penetration of sucklings into the holes and grooves of vessels and increases the efficiency of subsurface irrigation (11, 12, 13).

Figure 1. Pilot production site of Kazakh Scientific Research Institute of Water Economy

March – April

2016

7(2) Page No. 739

Technical site	Bedding, 0.1 ha (subsurface irrigation)
Irrigation pumping plant	Field ditch
Portable cabin	Onions, 0.1 ha (furrow
	irrigation)
Feeder channel	Onions, 0.2 ha (subsurface
	irrigation)
Road	Onions, 0.8 ha (drip irrigation)
Intake chamber	Supply canal
Bedding, 0.7 ha	R-1 Test replications
(control and furrow	
irrigation)	

In 2015, the tests to study and elaboration of subsurface irrigation technique at onions cultivation under the climatic conditions of the southern region of Kazakhstan were initiated at the pilot production site (PPS) of 0.2 ha (Fig 1).

In terms of mechanical composition, meadow-gray soils of pilot plot are medium-textured loams with a density of 1.22 ton/m³ and the lowest moisture equivalent of 21-22% by weight of the dry soil, and ground water level GWL=1.9-2.4 m. In terms of water permeability, the soils of pilot plot are regarded to those with an average permeability (Fig. 2).

Absorption rate during the first hour was 1.288 mm/min or 7.73 cm/h, while the attenuation factor was 0.28.

The following was determined during the preparation and implementation of field experiments on water saving technique at onions cultivation with subsurface irrigation at the PPS: the water-physical and agrochemical properties of the soil, rooting depth, groundwater salinity and a number of other indicators according to existing established survey technique.

Phenological and biometrical observations were carried out according to the established practice, while experimental results were processed using statistical methods (14, 15). Agrochemical properties of the soil were determined through the laboratory studies according to standard techniques (16, 17, 18, 19, 20).

RESULTS

The subsurface irrigation system includes water source, irrigation pumping plant, supply, distribution and irrigation lines and the devices for subsurface irrigation of plants.

RJPBCS

7(2)

Page No. 740

2016

March - April

Water-conducting porous hoses produced by "Kazkauchuk" LLP (Kyzylorda) according to German technology are applicable for use in subsurface irrigation systems.

The hose has a dense structure and micropores along its full length, through which water penetrates directly to the plant roots allowing it to be used both on the earth's surface and at landing into the soil in almost any area providing an increased efficiency of agricultural crops development.

At a slight pressure in the network (<0.06 MPa), water-filled hoses ooze, and thanks to the suction properties of the roots and capillarity of the soil, the water flows directly to the roots, that is, water is almost completely used for the purpose intended. The additional advantage of this system is the ability to provide plants of agricultural crops with fertilizers and minor nutrient elements as well as ambient oxygen.

In the tests, drip irrigation and traditional furrow irrigation were used as control options.

The following test options were studied:

Option 1 – subsurface irrigation; irrigation was carried out through oozing hoses produced by "Kazkauchuk" LLC, laid in the ground at a depth of 5-7 cm.

Option 2 – drip irrigation; irrigation was carried out through drip irrigation system of the "NaanDanJain" company;

Option 3 – control; furrow irrigation was carried out.

The plots area at subsurface irrigation was 0.2 ha, drip irrigation - 1.0 ha, and control (furrow) irrigation - 0.1 ha.

The onions cultivation technology at subsurface irrigation consists of the following main stages:

- 1. Soil preparation;
- 2. Sowing;
- 3. The calculation of subsurface irrigation system and its installation in the field;
- 4. Nutrition and irrigation regimes;
- 5. Control of weeds, pests and diseases;
- 6. Onions harvesting.

In the spring (March 19), after harvesting of crop residues at the onions cultivation site, we conducted moldboard plowing of test plot to a depth of 23 cm plowing up by 3 furrow share plow and harrowing by light harrows 3BP-0.6 to a depth of 5-7 cm (Fig. 3). The cultivation of the treated soil, leveling and compaction of the topsoil, as well as layout of the PPS surface were carried out during the timeframe from 6 to 13 April.

Figure 3. Harrowing by light harrows 3BP-0.6 to a depth of 5-7 cm.

2016

The treatment with solid mineral fertilizers was carried out on April 18 using a mechanical spreader in all test options (150 kg/ha of "Suprafos", 100 kg/ha of ammophos, and 500 kg/ha of potassium sulfate).

The use of quality hybrid seeds for growing onions is the prerequisite and the groundwork of the future harvest. The seeds of the "Manas" variety, having a high tolerance to pink rot and fusarium, were selected for planting in all test options.

The use of contemporary heterotic hybrids and varieties is economically justified only in the case of availability of precision seed drills. Therefore, sowing the seeds of "Manas" variety onions was conducted on April 22 employing precision seed drill with seeding rate of 9 kg/ha and simultaneous laying of lines for subsurface and drip irrigation. For these options, 10-row planting scheme of onions through 1.4 m (Fig. 4) was chosen. With this planting scheme, one irrigation line evenly moistens five sowing lines.

Figure 4. Onions planting with simultaneous laying of lines for subsurface and drip irrigation

Supply and distribution networks, irrigation lines with the necessary shut-off and control valves, irrigation facilities, means of irrigation control and other necessary equipment was installed at the pilot production site. After this, pre-emergent irrigations were carried out in all test options. Further, watering through the subsurface and drip irrigation systems were carried out every 2-4 days depending on the need of the crops.

Figure 5. Carrying out works on pilot production site:

a) weeding of onion; b) onions growth and development monitoring area;c) onions processing with insecticides and pesticides against diseases and pests.

March – April

2016

RJPBCS

Onions is one of the most demanding crops in terms of water use, especially during the first 3-4 weeks after germination, when the first true leaves appear. Therefore, immediately after sowing of onions and installation of subsurface drip irrigation systems, watering was carried out until complete soaking of the humidification contour in the area of seeds occurrence.

The soil moisture in the roots concentration area was maintained during the growing season at minimal water capacity (MWC) of 70-80%. Maintaining soil moisture in the zone of the root system occurrence at optimum level is a basic principle of subsurface and drip irrigation. Irrigation depth and, consequently, the irrigation regime were determined based on the quantity of moisture evaporated and used by the plants.

Observations of the plants growth and development, sampling of soil for determination of its moisture content, monitoring ground water levels, weeding, onions processing against diseases and pests, etc. were carried out in all test options (Fig. 5).

The results of observations of the "Manas" variety onions growth and development phases are shown in Table 1.

Growth and development phases of the	Dates				
elements of agrotechnics	Subsurface irrigation	Drip irrigation	Control		
Sowing	22.04.	22.04.	22.04.		
Seeds germination	10.05.	11.05.	01.05.		
Crookneck	17.05.	19.05.	09.05.		
Flag	26.05.	27.05.	17.05.		
The 1 st leaf phase	17.06.	17.06.	10.06.		
The 2 nd leaf phase	01.07.	01.07.	30.06.		
The 3 rd leaf phase	07.07.	07.07.	07.07.		
The 4 th leaf phase (seedling phase)	15.07.	15.07.	18.07.		
The 5 th leaf phase	22.07	22.07	25.07.		
The 6 th leaf phase	25.07.	25.07.	28.07.		
The 7 th leaf phase	29.07.	29.07.	03.08.		
The beginning of bulb formation	05.08.	05.08.	11.08.		
Formed bulb	17.08.	17.08.	26.08.		
Matured bulb	12.09.	12.09.	20.09.		
Onions harvesting	02.10.	02.10.	10.10.		

Table 1. The growth and development phases of "Manas" variety onions in various test options.

Farming cultivation of onions in the tests was carried out in accordance with the flow process chart of bulb onion cultivation. Care of crops during the growing season consisted in a timely and high-quality intercultivation, weed, as well as pests and diseases control. Additionally, foliar applications were carried out for complete supply of onions with essential minor nutrient elements at growth and development stages (Table 2). The types and amounts of mineral fertilizers were selected on the basis of soil and climatic conditions as well as flow process charts of onions cultivation at subsurface and drip irrigation.

Table 2. Flow process chart of onions	s cultivation at subsurface and drip irrigation
---------------------------------------	---

Type of works and resources	Area, ha	Execution period	Types and amounts of fertilizers and plant protection agents	Purpose of the formulations	Type of agricultural equipment
1	2	3	4	5	6
Cleaning of plant residues from the field preceding crop	1.3	17.03.			MT3-82+draught with harrow and manually

March – April

Plowing to a depth of 23cm	1.3	19.03.			MT3-82+draught with PON-3-30 share plow
Cultivation	1.3	06.04.			MT3-82+draught with KPS-4 cultivator
Leveling and compaction of the topsoil	1.3	10.04.			MV-6 land leveler
Layout	1.3	13.04.			Autograder
Harrowing to a depth of 5-7 cm	1.3	13.04.			MT3-82+draught with 3BM-0.6 harrow
Presowing application of mineral fertilizers	1.3	18.04.	Suprafos ¹ : 150 kg/ha; Ammophos: 100 kg/ha; Potassium sulfate: 500 kg/ha		T-25+RUM5-0.35
Presowing cultivation	1.3	21.04.			MT3-82+draught with KPS-4 cultivator
Planting of Manas variety onions at a seeding rate of 9 kg/ha with simultaneous cutting of ridges and laying tape for subsurface and drip irrigation	1.3	22.04.			Precision seed drill
After seeding tillage	1.3	24.04.	Stomp: 10 packs; BI-58: 1 packs; Gaucho (imidacloprid): 17	Against dicotyledonous weeds; pest control	MTZ-82+ OP 2000
Hilling of field ditches for irrigation	1.3	25.04.			K-701+KOR-500
Hilling of field ditches for the furrow irrigation	0.1	01.05.			MTZ-82.1+KOR
Laying of lines and hoses for subsurface irrigation	0.2	05.05.			Manually
Installation of drip irrigation to laflete	1.0	06.05 07.05.			Manually
Preparing of pumping equipment for watering	1.2	10.05.			Manually
The application of insecticide in test option #3	0.1	13.05.	BI-58 (dimethoate): 1.0 l/ha	Pest control	MTZ-82+ OP 2000
Foliar application of onion in test option #3	0.1	13.05.	Ammonium Phosphate: 3 kg/ha	Adjustment of plant nutrition	Manually
Fertilizer application in test option #3	0.1	15.05.	Ammonium sulphate: 60 kg/ha	Top-dressing	MTZ-82+ KRN 4.2 cultivator
Fertilizer applications in test options #1 and #2	1.2	17.05 19.05.	Ammonium Sulphate: 60 kg/ha BI-58 (dimethoate): : 1.0 l/ha	Plant-root fertilization; Pest control	Subsurface and drip irrigation system
Spraying of crops	1.3	21.05.	Aktara ⁶ : 375 g/ha	Pest control	MTZ-82+ OP 2000
Post-emergence weeding	1.3	28.05- 6.06.			Manually
Spraying of crops	1.3	02.06- 03.06.	Aktara: 375 g/ha	Pest control	MTZ-82.1+ OP 2000
Top-dressing with mineral fertilizers in test options #1 and #2	1.2	0.6.06.	UAN: 3 l/ha	Plant-root ertilization for balanced plant nutrition	Subsurface and drip irrigation system

The application of fertilizer in test option #3	0.1	08.09.	AmmoniumTop-dressing withaltpeter:nitrogen100 kg/ha		Manually
Application of fertilizers in test options #1 and #2	1.2	08.06 10.06.	AmmoniumTop-dressing byaltpeter:nitrogen;75 kg;NPK complexfertilizerfertilizer8 kgfertilizer		Subsurface and drip irrigation system
The application of fertilizer and insecticide in test options #3	0.1	10.06.	UAN: 7 l; Gaucho (imidacloprid): 4 l	Plant-root ertilization against wide range pf pests	With water along the furrows
Spraying the onion by minor nutrient elements in test options #1and #2	1.2	12.06.	Grogreen: 500 gr/ha; Gum: 100 gr/ha	Growth stimulator; elimination of micronutrient deficiencies	Subsurface and drip irrigation system
Weeding of onions in test option #3	0.1	14.06 16.06.			Manually
Weeding of onions in test options #1 and #2	1.2	17.06.			Manually
Application of fertilizers in test options #1 and #2	1.2	18.06.	Ammonium altpeter: 50 kg/ha; «Polytrin» – 0.5 l/ha	Top-dressing with nitrogen against the larvae of lepidopteran pests and other leaf- eating insects	Subsurface and drip irrigation system
Application of fertilizer in test options #1 and #2	1.2	20.06.	Suprafos: 50 kg/ha		Subsurface and drip irrigation system
Soraying of field ditches by herbicides	1.3	21.06.	Zellek-Super "Hurricane"	Zellek-Super Destruction of all "Hurricane" kinds of grass weeds in dicotyledonous crops	
Application of fertilizers with water in test options #1 and #2	1.2	22.06.	UAN: 26 l "Baikal" ³ : 1 l	Plant-root fertilization; growth promoting factor	Subsurface and drip irrigation system
Application of fertilizers in test option #3	0.1	25.06- 26.06.	Ammonium altpeter: 250 kg/ha	Top-dressing with nitrogen	With water along the furrows
Spraying of onion in test option #3	0.1	27.06.	"Bravo" ⁴ : 5 l; Nurel: 2 l	Disease control	Manually
Application of fertilizers in test options #1 and #2	1.2	28.06 29.06	Ammonium altpeter: 150 kg; UAN - 17 l	Plant-root ertilization Side dressing by nitrogen	Subsurface and drip irrigation system
Spraying onion with a mixture in test options #1 and #2	1.2	30.06.	Grogreen N13-P40: K13: 3 kg; LukRost: 100 gr; Calcium: 2 kg	Growth promoting factor; Plant-root fertilization	MTZ-82+ OP 2000 (per 400 l of water)
Spraying onion with a mixture in test option #3	0.1	30.06.	Ascot: 2 I; Growth promoting LukRost: 200 gr; factor; "Baikal":- 2 I; Calcium: 4 kg; NPK complex Novalon 19-19-19: fertilizer 5 kg		MTZ-82+ OP 2000 (per 800 l of water)
Application of fertilizers in	1.2	30.06.	Calcium - 5 kg/ha	Vitamins preventing	Subsurface and drip

test options #1 and #2				the lodging			
Spraying onion with a	1.2	03.07.	Novalon 19-19-19:	MTZ-82+ OP 2000 (per			
mixture in test options #1			3 kg;	400 l of water)			
and #2			"Baikal": 2 l;	Growth promoting	,		
			Calcium: 1 kg:	factor:			
			Gum: 1 l	Prevention and			
				elimination of			
				micronutrient			
				deficiencies			
Spraving onion with a	0.1	03.07.	Novalon 19-19-19:	NPK complex	MT7-82+ OP 2000 (per		
mixture in test option #3	0.1	001071	4 kg·	fertilizer:	800 L of water)		
			"Baikal": 11	Growth promoting			
			Calcium: 2 kg:	factor:			
			Gum: 1 l.	nrevention and			
			Boron: 0.5 kg	elimination of			
			D01011. 0.3 Kg	micronutriont			
				deficiencies			
Spraving onion with a	1 2	07.07	"Provo": 0 li	Disease control	MT7 92 L OD 2000 (por		
spraying onion with a	1.5	07.07.	DIdVU . 91,	Disease control	1200 L of water)		
Hixture in test options #1,			"Dolutrio": 2 lu	against the larvae of	1200 FOF water)		
#2 and #3			POIVLIIII : Z I;	Lepidoptera pests			
			"Stroby": 3 I.	and a the subset set is a			
				other leaf-eating			
Application of foutility i	1.2	00.07	Carbornida: 200 lu-	Insects	Cultar of a construction		
Application of fertilizers in	1.2	08.07	Carbamide: 200 kg;	Side dressing with	Subsurface and drip		
test options #1 and #2		10.07.	Ammonium	nitrogen and minor	irrigation system		
			altpeter:	nutrient elements			
	-		400 kg; «Baikal» 0.5 l				
Application of fertilizers in	0.1	08.07.	Carbamide: 350 kg	Carbamide: 350 kg Top-dressing with			
test option #3				nitrogen	along the furrows		
Weeding of onions in all test	1.3	09.07			Manually		
options		14.07.					
			2				
Spraying onions with an	1.3	21.07.	"Karate" ² : 0.2 l/ha		MTZ-82+ OP 2000		
insecticide				Pest control			
Spraying onions with an	1.3	22.07.	"Akrobat": 2 kg/ha	The destruction of	MTZ-82+ OP 2000		
insecticide				weeds, insects, their			
				larvae and eggs			
Spraying onions with a	0.1	27.07.	"Tien Shan": 2.kg/ha;	Chemical fertilizers	MTZ-82+ OP 2000		
mixture in test option #3			"Polytrin": 0.7 l/ha;	against			
			"Diamant": 0.7 l/ha	dicotyledonous			
				weeds			
Spraying onions with a	1.2	28.07.	Morbidol: 2 l;	Pests control	MTZ-82+ OP 2000		
mixture in test options #1			Calcium: 2 l;	against the larvae of			
and #2			"Polytrin": 2 l;	Lepidoptera pests			
			"Diamant": 2 l/ha	and			
				other leaf-eating			
				insects			
Top-dressing onions in test	0.1	28.07	Ammonium	Top-dressing with	Manually and through		
option #3		29.07.	altpeter-	nitrogen	subsurface and drip		
			600 kg	, C	irrigation system		
Top-dressing onions by	0.3	30.07.	Novalon 19-19-19:	NPK complex	Manually and through		
fertilizers in test options #1	-	-	2 kg;	fertilizer;	the subsurface		
and #3			UAN: 4 I:	, Nitrogen fertilizer	irrigation system		
			"Baikal": 1		0		
Top-dressing onions by	1.0	31.07	Novalon 19-19-19	NPK complex	Manually and through		
fertilizers in test ontion #2	1.0	51.07.	1 kg:	fertilizer	the drip irrigation		
			UAN: 21	Plant-root	system		
			"Baikal": 1 I	fertilization			
			Buildin . 11	Growth promoting			
				factor			
Spraving onions with a	1 २	03.08	Carhamide: 75 kg.	Ton-dressing of	MT7-82+ OP 2000		
Spraying Unions with d	т.э	00.00	carbannue. / J kg,	10p-ulessing Ul	WIL-02 + 0P 2000		

March – April

mixture in all test options			Magnesium sulfate: 16 kg; Novalon 19 -19-19: 7.5 kg; Boron: 3 kg; "Karate": 2 l; "Polytrin": 1 l; "Enjio" ¹⁰ : 0.5 l		
Top-dressing onions in test options #1 and #2	1.2	03.08.	"Dense calcium ": 2 kg; Beres-4 (calhumite): 0.2 l; "Baikal"; 1 l	Dense calcium ": 2 Plant-root kg; ertilization Beres-4 (calhumite): N: 15.5%, 0.2 l; "Baikal"; 1 l CaO: 26.5%. Top-dressing with minor nutrient elements	
Spraying onions with a herbicide in test option #3	0.1	04.08.	Morbidol, 1 l/ha	Pests control	MTZ-82+ OP 2000
Spraying onions with a biological fertilizer in all test options	1.3	05.08.	"Izabion" ⁹ : 2 l/ha	Plants Growth promoting factor	MTZ-82+ OP 2000
Top-dressing onions in test options #1 and #2	1.2	07.08 <i>,</i> 09.08.	Ammonium saltpeter 50 + 25 kg	Top-dressing with nitrogen	Subsurface and drip irrigation system
Top-dressing onions in test option #3	0.1	09.08. 10.08.	Ammonium saltpeter 350 kg+500 kg	Top-dressing with nitrogen	Manually with irrigation water
Spraying onions with a mixture in all test options	1.3	10.08.	Acetamiprid: 300 gr/ha; "Karate": 300 gr/ha	Acetamiprid: 300 Coleoptera and I gr/ha; Lepidoptera pests "Karate": 300 gr/ha and mites control	
Top-dressing onions in test options #1 and #2	1.2	11.08.	Ammonium altpeter: - 25 kg	Top-dressing with nitrogen	Subsurface and drip irrigation system
Top-dressing onions in test option #3	0.1	12.08.	Ammonium altpeter- 100 kg	mmonium Top-dressing with tpeter- nitrogen	
Spraying onions with herbicides in test options #2 and #3	1.1	14.08.	Morbidol: 0.5 l/ha; "Baikal": 2 l/ha; Grogreen – 5 kg/ha	Aorbidol: 0.5 I/ha; Growth stimulation 'Baikal'': 2 I/ha; weeds control Grogreen – 5 kg/ha	
Spraying onions with herbicides in test options #2 and #3	0.1	27.08.	"Goal" – 0.5 l; Acetamiprid: 6 packs	Goal" – 0.5 l; Pest and licotyledonous veeds	
Application of agent in test option #2	1.0	29.08.	Lime saltpeter: 6 kg/ha	Top-dressing with nitrogen	Drip irrigation system
Spraying onions with a mixture in test options #1 and #2	1.2	02.09.	"Baikal": 1 I; "Izabion": 1 I; Calcium: 7 kg; Potashium – 10 kg; Gum Potashium 2 I	Bio-stimulation of plants growth, application of nineral fertilizers	MTZ-82+ OP 2000
Spraying onions with a mixture in test option #3	0.1	02.09.	"Baikal": 4 I; MWC 101: 10 packs; Calcium: 7 kg; Potassium: 5 kg Potassium Gum: 1 I	Stimulation of plants growth, application pf mineral fertilizers	MTZ-82+ OP 2000
Top-dressing onions in test option #3	0.1	03.09.	Ammonium altpeter: 100 kg	Top-dressing with nitrogen	Manually with irrigation water
Top-dressing onions with mineral fertilizers in test options #1 and #2	1.2	12.09.	Gum: 1 l; Potashium: 1 l	Application of mineral fertilizers	Subsurface and drip irrigation system
Harvesting onions	1.3	02.10	02.10	12.10.	Manually

¹ "Suprafos" – N: 12% , P: 24% , Ca: 14%, S: 25%, and Mg: 0.5%;

- ² "Karate" lambda cyhalothrin;
- ³ "Baikal" microbial fertilizer containing a large number of anabiotic effective microorganisms;
- ⁴ "Bravo" fungicide;
- ⁵ "Polytrin" broad-spectrum insecticide;

⁶ "Aktara" – insecticide of intestinal-contact action for protection of cultivated plants against sucking and leaf-eating pests;

- ⁷ "Zellek Super" specialized herbicide to fully kill perennial and annual grass weeds in crops of dicotyledonous crops;
- ⁸ "Stroby" highly effective broad-spectrum fungicide;
- ⁹ "Izabion" amino acids and peptides;
- ¹⁰ "Enjio" neonicotinoids and pyrethroids.

The onion reaches the stage of physiological maturity and is ready to harvest when the neck of the bulb loses its elasticity, leading to lodging that indicates the readiness of bulb onion for long-term storage. Before harvesting the onions should be allowed to dry and ripen (Fig. 6c). Watering of the onions should be stopped at the lodging stage to allow the bulbs to dry out during the field ripening. The optimal level of onions bunch lodging to start harvesting is 50-75% (Fig. 6a and 6b).

a) –Bunch lodging b) – Bunch drying and ripening c) – Matured bulb onions

Figure 6. Stages of physiological maturity of "Manas" variety onion.

It was revealed that implementation of pre-irrigation soil moistening differentiated according to cropper development phases is the most effective. Table 3 shows the levels of antecedent soil water and the depth of hydration depending on the onions development phase as well as the average values of irrigation rates for the medium loamy soil at PPS.

Table 3. Onions subsurface and drip irrigation options at the PPS

Bulb onion plant development phase	Antecedent soil water, MWC%	Depth of hydration, cm	Irrigation rate, m ³ /ha
Medium loamy soil			
Seedling – early formation of bulbs	85	30-35	65-75
Formation – the beginning of bulbs maturation	70	35-40	140-155
Bulbs maturation	75	35-40	130-150

At the furrow irrigation, the irrigation depth was ranged from 600 to 800 m³/ha depending on the onions development phase and water use.

According to the results on amount of water applied to various test options as well as taking into consideration onions development phases, climatic conditions, soil moisture, and frequency of irrigation, we have revealed that among all irrigation techniques under study the lowest irrigation rate was observed at subsurface irrigation (5400 m³/ha). At drip irrigation it amounted to 5600 m³/ha, while at furrow irrigation it was 7200 m³/ha. Increase of irrigation rates at drip irrigation by 3.9% was due to additional water losses on evaporation from the soil surface.

Irrigation regimes of onions for various test options as well as biological and actual yield and the croppers water-use ratios are shown in Table 4.

	Subsurface irrigation			Drip irrigation			Furrow irrigation		
Title	Seedling – early formatio n of bulbs	Formatio n – the beginnin g of bulbs maturatio n	Bulbs maturatio n	Seedling – early formatio n of bulbs	Formatio n – the beginnin g of bulbs maturatio n	Bulbs maturatio n	Seedling – early formatio n of bulbs	Formatio n – the beginnin g of bulbs maturatio n	Bulbs maturatio n
Antecedent soil water, MWC %	85	70	75	85	70	75	85	70	75
Depth of hydration, cm	30-35	35-40	35-40	30-35	35-40	35-40	30-35	35-40	35-40
Irrigation depth, m ³ /ha	65-75	140-151	130-150	65-75	140-155	130-150	200	140-155	130-150
Amount of irrigation	35		35			15			
Irrigation water requiremen t, m ³ /ha	5400		5600			7200			
Biological yield of onion, ton/ha	90.1		90.1		73.0				
Actual yield of onion, ton/ha (with regard to sowing dates)	80.4			75.6		50.1			
Water-use ratio, m ³ /ton		67.2			74.1		143.7		

Table 4. Irrigation schedule of onions for different test options

CONCLUSION

The highest yield of onions was noted at subsurface irrigation as compared to drip and furrow irrigations. At that, in terms of water use, subsurface irrigation is more efficient. Water-use ratio here amounts to 67.2 m^3 /ton while at drip irrigation it reaches to 74.1 m^3 /ton.

The research on subsurface irrigation technology leads to the following conclusion. Under the conditions of Zhambyl Region the use of subsurface irrigation regimes, differentiated by plants growth and

2016

RJPBCS

development phases, provided optimal soil moisture content that along with the use of fertilizers allowed obtaining the biological yield of "Manas" variety bulb onions up to 90 ton/ha. At that, soil moisture content in the layer of 0.3-0.4 m was 70-85% (MWC) during the first half of the growing season (from germination to the beginning of the bulb formation), and 70-75% (MWC) during the second half of the growing season (from the bulb formation to industrial ripeness). This technique ensured the reduction in water use per unit of product by 10.3% in comparison with drip irrigation and by 113.8% compared to furrow irrigation.

With increasing water scarcity, subsurface irrigation will undoubtedly find a wide application. Therefore, it is necessary to continue practicing in the near future the subsurface irrigation technique for other promising agricultural crops.

ACKNOWLEDGEMENTS

The article is based on the results of the research conducted within the budget program 212 "Scientific research and activities in the field of agroindustrial complex and natural management". The authors express their gratitude to research associates of the Department of Technology and Irrigation Technique of the Kazakh Research Institute of Water Management, B.M. Kurtebaev and R.A. Mamuchev, who were directly involved in conducting field work on these studies.

REFERENCES

- [1] Shengguo, G, and Xiuqiao, H., 2011, "Impulse Type Drip Irrigation System," Patent application number: CN2011174154 20110328, 07.09.2011.
- [2] Enciso-Medina, J., Unruh, B.L., Henggeler, J.C., and Multer, W.L., 2002, "Effect of Row Pattern and Spacing on Water Use Efficiency for Subsurface Drip Irrigated Cotton," Transactions of the ASAE, 45(5), pp. 1397-1404.
- Li Huifeng, Fan Shifeng, Li Linguang, He Ping, and Wang Haibo, (2013), "Overhead Suspension Type Water-Saving Sprinkler Irrigation Device," Patent application number CN2013213829U 20130111, Priority number(s): CN2013213829U 20130111; 2013-06-12.
- [4] Masahiro, K., 2015, "Drip Irrigation Tube," Patent application number: WO2014JP73876 20140910, Priority number(s): JP20130196945 20130924; 2015-04-02.
- [5] Sezen, S.M., Yazar, A., Kapur, B. and Tekin, S., 2011, "Comparison of Drip and Sprinkler Irrigation Strategies on Sunflower Seed and Oil Yield and Quality under Mediterranean Climatic Conditions," Agricultural Water Management, 98(7), pp.1153-1161.
- [6] Masahiro, K., 2015, "Drip Irrigation Emitter and Drip Irrigation Device Equipped with Same: US2015150199 (A1)" Patent application number: US201314402706 20130524, Priority number(s): JP20120118551 20120524; 20120524JP20120118552; WO2013JP03305 20130524; 2015-06-04.
- [7] International Commission on Irrigation and Drainage, 2014, "Annex 2: World Irrigation and Drainage Data," Annual Report 2013-14 ICID, New Delhi, pp. 73-80.
- [8] Finger, L., Wang, Q.J., Malano, H, Chen, D., and Morris, M., 2015, "Productivity and Water Use of Grazed Subsurface Drip Irrigated Perennial Pasture in Australia," Irrigation Science, 33(2), pp. 141-152.
- [9] Lamm, F.R., Manges, H.L., Stone, L.R., Khan, A.H., and Rogers, D.H., 1995, "Water Requirement of Subsurface Drip-Irrigated Corn in Northwest Kansas," Transactions of the ASAE, 38(2), pp. 441-448.
- [10] Kireicheva, L.V., 2010, "World Experience and Advanced Technologies for the Efficient Use of Water Resources: a Network of Water Agencies in Eastern Europe, Caucasus and Central Africa," Retrieved from <u>http://www.eecca-water.net/index.php?option=com</u>_content&task= view&id=516&Itemid=52.
- [11] Petrenko, L.P., 2013, "Method of Capillary Irrigation," Patent application number: 2013136937/13, Bulletin 31, Russian Federation.
- [12] Ayars, J.E., Fulton, A., and Taylor, B., 2015, "Subsurface Drip Irrigation in California Here to Stay?" Agricultural Water Management, 157, pp. 39-47.
- [13] Tserling, V.V., 1990, "Handbook on Diagnostics of Agricultural Crops Nutrition," Moscow, Agropromizdat, 235 p.
- [14] Dospekhov, B.A., 1985, "Field Experiment Technique," Moscow, Agropromizdat, 351 p.
- [15] Pustyl'nik, E.I., 1968, "Statistical Methods of Analysis and Processing of Observations," Moscow, Nauka, 288 p.

March – April

- [16] "Soil: Definition of Labile Forms of Phosphorus and Potassium by Machigin Method," GOST 26205 -91.
- [17] "Determination of Humus by Tyurin Method. Determination of Nitrogen by Cornfield Method," GOST 26213-84.
- [18] "The Quality of the Soil. Determination of pH," GOST 26483-85.
- [19] "Methods for Determination of Cation-Anion Composition of the Aqueous Extract," GOST 26423-85.
- [20] Shtepa, B.G., Nosenko, V.F., and Vinnikova, N.V., 1990, "Mechanization of Irrigation. Handbook," Moscow, Agropromizdat, 336 p.