Research Journal of Pharmaceutical, Biological and Chemical Sciences

Molecular Pathogenetic of Cervical Cancer.

 Parameswari P* and Jayalaxmi.Department of Bioinformatics, Bharath University, Chennai, Tamil Nadu, India.

Abstract

Cervical cancer is a disease in which the cells of the cervix become abnormal and start to grow uncontrollably, forming tumors. It is usually a slow-growing cancer that may not have symptoms but can be found with regular Pap tests (a procedure in which cells are scraped from the cervix and looked at under a microscope). Cervical cancer is almost always caused by human papillomavirus (HPV) infection. P16 were found molecular targets in Cervical cancer. Studies of these protein were done by insilico method. activation of these protein can be induced by anticancer property holding compounds, among these MIS, allin, vinblastine and vincristine and molecular dynamics properties analysed and docked with these targets to determine their binding energies.

Keywords: Crevical cancer, P16 molecular targets, insilico, Molecular dynamics

INTRODUCTION

Human papillomavirus (HPV) infection is a necessary factor in the development of almost all cases of cervical cancer. HPV vaccines effective against the two strains of HPV that currently cause approximately 70\% of cervical cancer have been licensed in the U.S, Canada, Australia and the EU. Since the vaccines only cover some of the cancer causing ("high-risk") types of HPV, women should seek regular Pap smear screening, even after vaccination. [1] Human papillomavirus (HPV) infection with high-risk types has been shown to be a necessary factor in the development of cervical cancer.[8] HPV DNA may be detected in virtually all cases of cervical cancer.[1][8][2] Not all of the causes of cervical cancer are known. Several other contributing factors have been implicated.[9]

Women who have many sexual partners (or who have sex with men who had many other partners) have a greater risk.[10][11] Genital warts are caused by various strains of HPV which are usually not related to cervical cancer. However, it is possible to have multiple strains at the same time, including those that can cause cervical cancer along with those that cause warts. The medically accepted paradigm, officially endorsed by the American Cancer Society and other organizations, is that a patient must have been infected with HPV to develop cervical cancer, and is hence viewed as a sexually transmitted disease but most women infected with high risk HPV will not develop cervical cancer.[16] The naming and histologic classification of cervical carcinoma percursor lesions has changed many times over the 20th century. The World Health Organization classification[19][20] Cervarix, manufactured by GlaxoSmithKline, has been shown to be 92% effective in preventing HPV strains 16 and 18 and is effective for more than four years.[25] Cervarix was approved in the US on 16 October 2009,[26] and in the EU in September 2007, as well as other nations.[27][28] Alliin and Allicin are two important sulfur-containing compounds found in Garlic and Onions and their relatives. Their names are derived from the Latin name of Garlic, Allium sativum. Both alliin and allicin are known as "organosulfur" compounds, which mean they are "organic" - contain carbon - and also contain sulfur. Many medicinal organosulfur compounds are found in the Alliums, but Garlic contains the highest concentration of them (54).

Extracts of Vinca have significant anticancer activity against numerous cell types. The greatest activity is seen against multi-drug resistant tumor types which suggest that there are compounds in Vinca rosea that are synergistic or additive with anti-neoplastic elements by inhibiting resistance to them. This library includes vincaleukoblastine (vinblastine),22 - oxovincaleukoblastine (vineristine), reserpine, vincamine, vincristine, vinblastine, leurocristine, ajmalicine.

MATERIALS AND METHODS

Databases:

1. Genbank:

Databank of genetic sequences operated by a division of the NATIONAL INSTITUTE OF HEALTH.

2. Protein Data Bank:

A Protein Data Bank (PDB) is a database, which has a collection of protein structure [10]

3. Genecard:

Genecard is a database, which has collection of information about the genes.

Tools :

1. Arguslab:

A molecular modeling, graphics, and drug design. Arguslab offers geometry optimisation using the MNDO, AM1 or PM3 semiempirical levels, as well as single point calculations using these, though the range of elements covered is much less [11]. There are also single point semiempirical calculations using Extended

Huckel (for a bigger element coverage) or ZINDO (for excited states for UV/visible absorption prediction). Arguslab has good facilities for calculating electron density or orbital surfaces at the semiempirical levels, and displaying them. Arguslab writes its own format of molecule file, .xml, but it can also write .xyz files for input to other programs, e.g. molden. It creates (and leaves behind) a lot of temporary files, which need to be managed.

2. Hyperchem:

HyperChem is a Sophisticated molecular modeling environment that is known for its quality, flexibility and case of use. Uniting 3D visualization and animation with quantum chemical calculation, molecular mechanics and dynamics [12]. The QSAR properties was determined using this software. Binding affinity of the ligands used for the present study where analysed using QSAR properties.

1. PRODRG Server:

PRODRG server is a tool for high-throughput crystallography analyzer for protein-ligand complexes [13].
2. ASTP:

CastP server is a tool for predicting the protein pockets where the ligands can bind.

3. Molegro Virtual Docker:

Molegro Virtual Docker (MVD) is an integrated environment for studying and predicting ligands interact with macromolecules [14]. The identification of ligand binding modes is done by iteratively evaluating the ligand conformations and estimating the energy of their interactions with the macromolecules.

4. Yasara:

Yet Another Scientific Artificial Reality Application (YASARA) is a molecular-graphics, -modeling and simulation program for Windows and Linux developed in 1993.

5. Methodology

1. The given query term P16 was searched in genecard and details about that were shown.
2. The pdb files of the ligand molecules (Combinatorial Library) was built by Hyperchem software [15].
3. The Molecular Dynamics and Energy Minimization of the ligand molecules were done in Argus Lab by adjusting the corresponding parameters.
4. QSAR properties were analyzed in Hyperchem and ProDRG server.
5. The cavity of the targets was determined by CastP.
6. In Molegro Virtual Docker the selected targets and ligands were docked.
7. The best hit of the result was selected based on the highest score, energy and the RMSD values.
8. Results of the best hit was selected and downloaded.
9. Viewed by using visualization program - YASARA

Gene Card Database

	Version 3 rds (B) The Human Gene		מן לעדע WEIZMANN INSTI academic non-profit instit	ワク OF SCIE ALL other			
Search	GeneCards Guide	Suite	Terms and Conditions	About Us	Mirror sites		Feedback
Set analysis: Export List GeneALaCart GeneDecks			Q keyword(s)		- P16	Search	Advanced

Search Results Sorted by Relevance Score

1159 results for P16 .			- Click + below for minicard - Click symbol for GeneCard			showing 1-20 show 20		-
	${ }_{+}$	Symbol	Description	Category	GIFtS	GC id	Score -	
1	\pm	CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	protein-coding	70	GC09M021957	49.93	
2	\pm	ARPC5	actin related protein $2 / 3$ complex, subunit $5,16 \mathrm{kDa}$	protein-coding	55	GC01M183592	14.45	
3	\pm	CDK4	cyclin-dependent kinase 4	protein-coding	72	GC12M058142	8.24	
4	\pm	TP53	tumor protein p53	protein-coding	80	GC17M007565	8.17	
5	\pm	RB1	retinoblastoma 1	protein-coding	70	GC13P048877	7.76	
6	\pm	CDKN2B	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)	protein-coding	62	GC09M021992	7.21	
7	\pm	OFD1P16Y	OFD1 pseudogene 16, Y-linked	pseudogene	10	GCOYM023958	6.05	
8	\pm	MYC	v-myc myelocytomatosis viral oncogene homolog (avian)	protein-coding	72	GC08P128748	4.95	
9	\pm	EGFR	epidermal growth factor receptor	protein-coding	76	GC07P055054	4.71	
10	\pm	KRAS	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	protein-coding	62	GC12M025358	4.24	
11	\pm	MC1R	melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)	protein-coding	63	GC16P089985	4.11	
12	\pm	MTAP	methyithioadenosine phosphorylase	protein-coding	66	GC09P021792	3.84	
13	\pm	WHSC1	Wolf-Hirschhorn syndrome candidate 1	protein-coding	62	GC04P001840	3.78	
14	$+$	s100P	S100 calcium bindina protein P	protein-codina	54	GC04P006695	3.18	

From Gene Card Database, the targets P16 details were taken to analyse.

NCBI - GENE:

PROTEIN:

The Sequences were obtained in FASTA format.
Thus the information of P16 was retrieved. There were totally 1267 bp nucleotide residues and 156 amino acid residues for P16. The results in Fasta format were saved to the local hard disk for future use.

SELECTED COMPOUND FROM LIGAN D LIBRARY [16]

MIS:

The binding efficiency of MIS was calculated as RMSD bond ideality: 0.016 RMSD angle ideality: 6.637

ALLIIN:

The binding efficiency of ALLIIN was calculated as RMSD bond ideality: 0.009 RMSD angle ideality: 2.356

QSAR FOR MIS, ALLIIN, VINCRISTINE AND VINBLASTINE.

A		B	C	D	E
CHEMICAL COMPOUND		PARTIAL CHARGES S	SURFACE AREA(APP)	SURFACE AREA(GRID)	VOLUME
MIS		0.00 e 3 35	350.49 A2	342.59 A2	
		0.00 e - 37	377.65 A2	334.46 A2	489.79 A3
VINCABLASTINE		0.00 e	827.90 A2	908.95 A2	1773.17 A3
VINCRISTINE		0.00 e	827.94 A2	908.96 A2	1773.17 A3
E	F	G	H	1	J
VOLUME	HYDRATION ENERGY	LOG P	REFRACTIVITY	POLARIZABILITY	MASS
501.25 A3	-3.03 K $\mathrm{cal} / \mathrm{mol}$	0.86	35.14 A3	12.43 A3	176.21 amu
489.79 A3	$-7.35 \mathrm{Kcal} / \mathrm{mol}$	1.08	30.94 A3	9.22 A3	166.13 amu
1773.17 A3	$1.34 \mathrm{Kcal} / \mathrm{mol}$	5.39	167.99 A3	60.74 A3	761.60 amu
1773.17 A3	$1.34 \mathrm{Kcal} / \mathrm{mol}$	5.39	167.99 A3	60.74 A3	761.60amu

THE GEOMETRY OPTIMIZATION \& MOLECULAR DYNAMICS RESULTS OF LIGANDS WERE OBTAINED FROM
ARGUS LAB

MIS:

PM3 - QUANTUM MECHANICS CALCULATION FOR MIS [18]

System Type	Quantum Mechanical
Hamiltonian	PM3 (NDDO)
SCF Type	UHF
Run Type	SCF
Atoms	11
Electrons	53
Alpha	27
Beta	26
Multiplicity	2
Water Model	SPCE
Coordinates	angstroms
Basis set	Minimal Valence Basis as STO 6G
Max. SCF cycles	200
SCF convergence	$1.5936 e-013$ au. for energy
PM3 param file	C: \backslash Program Files \backslash ArgusLab $\backslash p a r a m s ~$
SMm3.prm	
SCF saved every	1000 cycles

Two-electron integrals

buffer size storage			1000
			random list in core
	Property integrals	erty integrals	center
	ipole integrals	e integrals le	length oper
Input Atomic Information			

	C 1.856000	$1.856000-7.481000$	0.000000
2	C 3.155000	$3.155000-6.731000$	0.000000
3	C 4.454000	$4.454000-7.481000$	0.000000
	S 5.753000	$5.753000-6.731000$	0.000000
	C 7.052000	$7.052000-7.481000$	0.000000
	C 8.351000	$8.351000-6.731000$	0.000000
	C 9.650000	$9.650000-7.481000$	0.000000
	O 10.950000	10.950000-6.731000	0.000000
	O 9.650000 -8.	$9.650000-8.981000$	0.000000
	1005.753000	$5.753000-5.231000$	0.000000
	1 N 8.351000	8.351000-5.231000	0.000000

ALLIIN:

PM3 - QUANTUM MECHANICS CALCULATION FOR ALLIIN:

System Type	Quantum Mechanical
Hamiltonian	PM3 (NDDO)
SCF Type	RHF
Run Type	SCF
Atoms	17
Electrons	76
Water Model	SPCE
Coordinates	angstroms
Basis set	Minimal Valence Basis as STO 6G
Max. SCF cycles	200
SCF convergence	$1.5936 \mathrm{e}-013 \mathrm{au}$. for energy
PM3 param file	C:\Program Files\ArgusLab\params\pm3.prm
SCF saved every	1000 cycles

Two-electron integrals [19]

buffer size 1000
storage random list in core
Property integrals one center
Dipole integrals length operator

Input Atomic Information			
$* *$			
1	C	7.833000	-8.091000

Atomic spin densities

```
75 H 0.0000
```

S2 operator

exact	0.750000
calculated	0.750000

Properties elapsed time 0 sec.
Total Elapsed Time 6 min. 6 sec .

VINBLASTINE:

PM3 - QUANTUM MECHANICS CALCULATION FOR VINBLASTIN:

System Type		Quantum Mechanical
Hamiltonian		PM3 (NDDO)
SCF Type		UHF
Run Type		SCF
Atoms		75
Electrons	273	
Alpha	137	

Beta	136
Multiplicity	2
Water Model	SPCE
Coordinates	angstroms
Basis set	Minimal Valence Basis as STO 6G
Max. SCF cycles	200
SCF convergence	$1.5936 \mathrm{e}-013 \mathrm{au}$. for energy
PM3 param file SCF saved every	C:\Program Files\ArgusLab\params\pm3.prm 1000 cycles

Two-electron integrals

40	N	15.382900	-7.761000	0.000000
41	C	16.679900	-7.011000	0.000000
42	C	17.981000	-7.761000	0.000000
43	C	17.981000	-9.260900	0.000000
44	C	13.882900	-7.761000	0.000000
45	C	13.132900	-9.060000	0.000000
46	C	$17.980000-10.759900$	0.000000	
47	C	$19.278900-10.009900$	0.000000	
48	C	$14.083900-13.012000$	0.000000	
49	C	$12.782000-13.760900$	0.000000	
50	O	$7.588000-12.260900$	0.000000	
51	C	$16.681900-13.012000$	0.000000	
52	O	$16.681900-14.512000$	0.000000	
53	O	$17.981000-13.762000$	0.000000	
54	C	$17.981000-15.262000$	0.000000	
55	O	$17.981000-12.262000$	0.000000	
56	C	$19.481000-12.262000$	0.000000	
57	C	$20.981000-12.262000$	0.000000	
58	O	$19.481000-13.762000$	0.000000	
59	C	$6.288900-13.010900$	0.000000	
60	C	$5.365000-6.604000$	0.000000	
61	H	$20.981000-10.762000$	0.000000	
62	H	$22.481000-12.262000$	0.000000	
63	H	$20.981000-13.762000$	0.000000	
64	H	$19.481000-15.262000$	0.000000	
65	H	$16.481000-15.262000$	0.000000	
66	H	$17.981000-16.762000$	0.000000	
67	H	$5.538900-11.711900$	0.000000	
68	H	$7.038900-14.310000$	0.000000	
69	H	$4.990000-13.760900$	0.000000	
70	H	$5.365000-8.103900$	0.000000	
71	H	$5.365000-5.104000$	0.000000	
72	H	$3.865000-6.604000$	0.000000	
73	H	$11.282000-13.760900$	0.000000	
74	H	$14.282000-13.760900$	0.000000	
75	H	$12.782000-15.260900$	0.000000	

Atomic spin densities

```
75 H 0.0000
```

S2 operator

exact $\quad 0.750000$
calculated 0.750000
Properties elapsed time 0 sec.
Total Elapsed Time 6 min. 6 sec .

VINCRISTINE:

PM3 - QUANTUM MECHANICS CALCULATION FOR VINCRISTINE:


```
31 C 10.186900-12.262900 0.000000
32 C 8.887000-11.510900 0.000000
33 C 14.083900-10.010900 0.000000
34 C 14.083900-11.510900 0.000000
35 N 12.782000-12.260900 0.000000
36 C 15.382900-9.260900 0.000000
37 C 16.681000-10.009900 0.000000
38 C 16.681900-11.512000 0.000000
39 C 15.382900-12.262000 0.000000
40 N 15.382900-7.761000 0.000000
41 C 16.679900-7.011000 0.000000
42 C 17.981000 -7.761000 0.000000
43 C 17.981000 -9.260900 0.000000
44 C 13.882900-7.761000 0.000000
45 C 13.132900-9.060000 0.000000
46 C 17.980000-10.759900 0.000000
47 C 19.278900-10.009900 0.000000
48 C 14.083900-13.012000 0.000000
49 C 12.782000-13.760900 0.000000
50 O 7.588000-12.260900 0.000000
51 C 16.681900-13.012000 0.000000
52 O 16.681900-14.512000 0.000000
53 O 17.981000-13.762000 0.000000
54 C 17.981000-15.262000 0.000000
55 O 17.981000-12.262000 0.000000
56 C 19.481000-12.262000 0.000000
57 C 20.981000-12.262000 0.000000
58 O 19.481000-13.762000 0.000000
5 9 ~ C ~ 6 . 2 8 8 9 0 0 - 1 3 . 0 1 0 9 0 0 ~ 0 . 0 0 0 0 0 0 ~
60 C 5.365000 -6.604000 0.000000
61 O 14.080900-14.510900 0.000000
62 H 20.981000-10.762000 0.000000
63 H 22.481000-12.262000 0.000000
64 H 20.981000-13.762000 0.000000
65 H 19.481000-15.262000 0.000000
66 H 16.481000-15.262000 0.000000
67 H 17.981000-16.762000 0.000000
68 H 5.538900-11.711900 0.000000
69 H 7.038900-14.310000 0.000000
70 H 4.990000-13.760900 0.000000
71 H 5.365000-8.103900 0.000000
72 H 5.365000 -5.104000 0.000000
73 H 3.865000-6.604000 0.000000
74 H 11.483000-14.510900 0.000000
Atomic spin densities
************************
74 H 0.0001
S2 operator
***********
exact 0.750000
calculated 0.750000
Properties elapsed time 1 sec.
Total Elapsed Time 6 min. 23 sec.
```


CONCLUSION

The study of the structural \& functional properties of the target P16 was done by insilico method. These targets are responsible for the molecular pathogenetic state of Cervical cancer [19]. Inhibitor of P16 such as MIS, Allin, Vinblastine and Vincristine were found to be the best drug for anticancer activity of cervical cancer and can be used as an effective anti- Cervical cancer drugs after performing invitro experiments in future.

REFERENCES

[1] Kumar V, Abbas AK, Fausto N, Mitchell RN. Robbins Basic Pathology. Saunders Elsevier, USA, 2007, pp. 718-721.
[2] Walboomers JM, Jacobs MV, Manos MM. J Pathol 1999;189: 12-19.
[3] Parkin DM. Int J Cancer 2006;118: 3030-44.
[4] Stuart C, Ash M. Gynaecology by Ten Teachers. Hodder Education, UK, 2006, pp. 65-79.
[5] What Causes Cancer of the Cervix?. American Cancer Society. USA, 2006, pp. 11-30. Archived from the original on USA, 2007-10-13.
[6] Marrazzo JM, Koutsky LA, Kiviat NB, Kuypers JM, Stine K. Am J Public Health 2001; 91: 947-52.
[7] Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. J Pathol 2006;208: 152-64.
[8] DeMay M. Practical principles of cytopathology. American Society for Clinical Pathology Press, Chicago, IL, 2007.
[9] GSK's HPV Vaccine 100\% Effective For Four Years, Data Show. Medical News Today (MediLexicon International Ltd), UK, BA, 2006, pp. 2-27.
[10] FDA approves Cervarix, GlaxoSmithKline's cervical cancer vaccine. GlaxoSmithKline's, Retrieved 2009, pp. 10-30.
[11] Glaxo prepares to launch Cervarix after EU okay". Reuters, NY,USA, 2007, pp. 9-24.
[12] Dolinsky C. Cervical Cancer: The Basics. OncoLink -Abramson Cancer Center of the University of Pennsylvania, Pennsylvania, USA, 2006, pp.7-17.
[13] "Cancer jab 'stops 75\% of deaths'". BBC, London, UK, 2006, pp. 9-04.
[14] Strander B. At what age should cervical screening stop?. Brit Med J 2009; 338: 1022-1023.

