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ABSTRACT 
 

 We study the Hamiltonian with Sextic Potential and their generalizations incorporating additional rational 
functions. Objective of this article is to search for constants of motion for complex Hamiltonian with sextic potential 
system. In our discussion, we will make use of rationalization methods for complex dynamical systems on the extended 
complex phase plane (ECPS), for exactly solvable (ES) models. Invariants for such may be useful in the analysis of dynamical 
systems. 
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INTRODUCTION 

 

 A complex (non-Hermitian) Hamiltonian H  can provide real and bounded eigenvalues for certain 

domains of the underlying parameters if H  is invariant under the simultaneous action of the space ( P ) and 

time (T ) reversal. Complex Hamiltonian is no longer hermitian and ordinarily does not guarantee real 

eigenvalues, however, in its PT -symmetric form, the system is found to exhibit real eigenvalues [1, 2]. Now it 

is possible to study complex Hamiltonians ( PT -symmetric) which were not considered earlier for not meeting 
the Hermiticity requirement Complex Hamiltonian have been discussed in many branches of physics, such as 
condensed matter physics, particle physics, plasma physics. For the complex crystal lattice whose potential is 

isinxxV =)( , while the Hamiltonian isinxpH 2=  is not hermitian, it is PT -symmetric [3] and all of its 

energy bands are real. 
 
Then it is argued that the reality of the spectrum is a consequence of the combined action of parity 

and time reversal invariance of H . The parity operator P  and the time reversal operator T  are defined by 
their action on position and momentum operator (in quantum mechanics) as 

.   ;    ;:    ;    ;: iippxxTppxxP   Complex version of x  and p , written as 

,=  ;= 2121 ixppipxx   which have been used by Xavier and Aguiar [4] to develop an algorithm for the 

computation of the semi-classical coherent-state propagator. Kaushal [5] and his co-workers [6] has 
investigated the construction of complex invariants [7, 8] of 1D complex Hamiltonian systems on the extended 
complex phase plane (ECPS).  

 
The organization of the paper is as follows: in section 2, the complexification of dynamical system and 

method of construction of integrals is described. In section 3, we apply the method to obtain a complex 
invariant of a dynamical system and finally concluding remarks are given in section 4.  

 
THE RATIONALIZATION METHOD 

 

 Consider a one-dimensional real phase space ),( px , which may be transformed into a complex 

space ),,,( 2121 xppx , by defining position and momenta variables as   

 

              .=    ;= 2121 ixppipxx                         (1) 

 

 The presence of variables 
),( 22 xp

in the above transformation (1), can be regarded as some sort of 
coordinate-momentum interaction of the dynamical system. From (1) one can easily obtain   
 

             
,=   ;=

2121
xpppxx ii 

                 (2) 
 

  For construction of exactly solvable (ES) models, consider a complex phase space function 

21=),( iIIpxI  , as corresponding to 21=),( iHHpxH   to be the TID (time-independent) dynamical 

invariant of the system in ECPS, then this must conform the following invariance condition.   
 

                  0,=],[= PBt HIId                  (3) 

 

 where [.,.]  is the Poisson bracket (PB). Now using 21= iIII  , 21= iHHH   in (3), and after 

equating real and imaginary parts separately to zero, one obtains the following pair of equations: real part is   
 

 ))(())(( 1
2

2
1

1
2

2
1

2
2

1
1

2
2

1
1

HHIIHHII xppxxppx   

 0.=))(())(( 1
2

2
1

1
2

2
1

2
2

1
1

2
2

1
1

HHIIHHII pxxppxxp  (4) 

 



ISSN: 0975-8585 
 

July– August  2015  RJPBCS   6(4)  Page No. 1769 

 And imaginary part is   
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 For given ),,( tpxH  make an ansatz for I  preferably in power of momentum p , using PT -

symmetry both H  and I  reduce to the form 21= iIII   , 21= iHHH  , and then substitute the 

resultant 121 ,, HII  and 2H  in (4) and (5) and rationalize with respect to power of 1p  and 2x  and their 

combination will yield coupled partial differential equations for the arbitrary complex coefficient functions 

appearing in the ansatz for I . The substitution of solutions of these equations (if the solutions exits and are 

unique) in the ansatz for I  then yield the final form of invariant. We make an ansatz for complex invariant I  
in the form   
 

 
2

20 )()(= pxaxaI        (6) 

 

 and write its complex version in the form ,= 21 iIII   where   

 

 212
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1201 2)(= xpaxpaaI irr    (7) 

 and   

 212

2
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1002 2)(= xpaxpaaI rii    (8) 

  

  where the complex coefficient functions )()(=)( xaxaxa kikrk   are the real functions of their real 

arguments, that render I  invariant are to be determined.  
 

SEXTIC POTENTIAL 
 
 While the sextic potential has been studied thoroughly both from algebraic and analytic points of 

view, including PT -symmetry [9], no systematic study in an algebraic framework included for an invariant. 
Here an attempt is made to accomplish this. We discover that a rather general sextic potential with a barrier of 

the form 
6

6x
. Let us start considering a PT -symmetric potential:   

 

 
634221
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= xxx

p
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
   (9) 

 

  Here we demonstrate that the complex version of (9), namely the PT -symmetric one obtained by 

using (1) in (9), as 21= iHHH   with   
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   1H  and 2H  are linearly independent with respect to the canonical pairs 

),(),,(),,( 332211 pxpxpx  and ),( 44 px . Substitution of (7), (8), (10) in (4) yields the expression   
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which can be rationalized with respect to the power of 21, xp  and their combinations to give the 

following set of four coupled partial differential equations   
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xixxrp aa     (15) 

 
   So for construction of complex invariants one has to find out solutions for following 

unknown parameters )(),(),(),( 0022 xaxaxaxa riri  which are functions of ),( 21 px .  

 

(A) Solutions for ir aa 22 , : equations (14) and (15) can be reduced to similar second-order forms for 

the functions ir aa 22 ,  respectively,as   
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 solution of (16) in the form   
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 where 212121 ,,,,,,,   are arbitrary constant of integration to be determined later. 

 

(B) Similarly to solve ir aa 00 , . on differentiating (12) with respect to 1x  and (13) with respect to 2p  

and add the resultant expression  
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 where we have used (14) and (15) and then expression (17) to simplify the right hand side. Solution 
immediately will yield   
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 Another result for xra01  can be obtained if one retains the term )(
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 and looks for the solution of the resultant PDE’s again in the separable in the form 1x  

and 3p . The corresponding result for xra02  will yield some constraint relation, that would require that 

  

 2112  =  , =  0,= =     (20) 

 

 With this choice now, arbitrary constants for the expressions xra02  and xia02  takes the form   
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 Same procedure as followed for xra01  and solution in the form   
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   Note that the forms )(),(),(),( 0022 xaxaxaxa riri  from [(17)-(22)] are determined only 

from (4). With this expressions for the coefficient function when (5) is rationalized, one obtained several 

constrains so obtained are all 0.=s    

 
Construction of Invariants. For the construction of complex invariants using the results [(17)-(22)] for 

)(),(),(),( 0022 xaxaxaxa riri  one can obtain the real and imaginary parts 1I  and 2I  from (7) and (8),   
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 and finally complex invariant I  given by 21= iIII   can be written as   
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where 12=  ib   are arbitrary constant, which conforms the condition (4) in view of the PB. 

 
CONCLUSION 

 
 As pointed out in section 1, construction of invariant for a dynamical system and its physical 

interpretation(s) for better theoretical understanding of a given phenomenon is active area of research . Only 
availability of a few or all [2, 5, 8, 9] invariants for a dynamical system definitely offers insight into the finer 
details as far as an understanding of the phenomenon is concerned. Finally, a few remarks about the 
applicability of the systems investigated in this work are in order. The role of a linear invariant designed, 

however, for a rotating TD harmonic oscillator in N -dimensions is investigated by [10] in the context of 

coherent states.  
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