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ABSTRACT 
 

The resolution of remote sensing images increases every day, raising the level of detail and the 
heterogeneity of the scenes. Most of the existing geographic information systems classification tools (Stock 
well Transform) have used the same methods for years. With these new high resolution images basic 
classification methods do not provide satisfactory results. A region-based classification method segmentation 
is based on and a classification. In this paper, we have proposed an approach for the segmentation of very high 
resolution (VHR) satellite images using S-Transforms. Satellite images have many applications in meteorology, 
agriculture, geology, forestry, landscape, biodiversity conservation, regional planning, education, intelligence 
and warfare. The segmentation uses an S-Transform to divide the image into several homogenous regions. 
Then follows the region-based classification performed either with the method MCL (Maximum Likelihood 
classifier). The method was validated and a comparison between pixel-based and region-based classification 
was performed. This method provides better results comparing to the existing remote sensing classification 
tools, even if some work should be done to prove its robustness. We also proved that the prior segmentation 
significantly improves the results of classification, both from the quantitative and qualitative points of view. 
Keywords: segmentation, S-Transform, Maximum Likelihood classifier, median filter. 
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INTRODUCTION 
 

The resolution of images provided by the satellites increases every day. Some years ago, these images 
had a resolution of dozens of meters. The measured luminance of one pixel was representing the mean of 
luminance of several ground objects. Now the new satellites reach sixty centimeters of resolution, increasing 
the level of detail by a factor ten. With such images we can consider that each pixel is part of a single object. 
Thus, the heterogeneity of images has dramatically grown. Satellite images are mainly used in geographic 
information systems (GIS). Their classification is very useful for cartography. With low resolution satellite 
images, the intensity of the pixels is enough to individually classify each of them. On the contrary, high 
resolution image classification is more difficult. The increasing complexity of the scenes raises the level of 
details. For example a tree in a field or the shadows of the objects is visible, and the contextual information of 
the pixels becomes essential for a good classification. The existing GIS classification software’s generally use 
the same methods for low and high resolution images. If satisfactory results can be obtained with low 
resolution shots, the effectiveness of this software’s for high resolution images is questionable. To ensure a 
good accuracy, manual classification is sometimes preferred to automatic methods. The improvements of 
satellite imaging then require new classification methods. Some classifiers were recently developed for 
biomedical imagery or industry, but are still uncommon in remote sensing. Moreover in biomedical imagery a 
pre-processing step, the segmentation, is often added. Its aim is to divide the image into homogenous regions 
in order to extract contextual features. All these new methods are not fully exploited in remote sensing. 
Remote sensing provides a useful source of data from which updated land-cover information can be extracted 
for assessing and monitoring vegetation changes. In the past several decades, air photo interpretation has 
played an important role in detailed vegetation mapping, while applications of coarser spatial resolution 
satellite imagery such as Landsat Thematic Mapper (TM) and SPOT High Resolution Visible (HRV) alone have 
often proven insufficient or inadequate for differentiating species-level vegetation in detailed vegetation 
studies . Classification accuracy is reported to be only 40 percent or less for thematic information extraction at 
the species-level with these image types. However, high spatial resolution remote sensing is becoming 
increasingly available; airborne and space borne multispectral imagery can be obtained at spatial resolutions at 
or better than 1 m. The utility of high spatial resolution for automated vegetation composition classification 
needs to be evaluated. High spatial resolution imagery initially thrives on the application of urban-related 
feature extraction has been used, but there has not been as much work in detailed vegetation mapping using 
high spatial resolution imagery. This preference for urban areas is partly due to the proximity of the spectral 
signatures for different species and the difficulties in capturing texture features for vegetation. While high 
spatial resolution remote sensing provides more information than coarse resolution imagery for detailed 
observation on vegetation, increasingly smaller spatial resolution does not necessarily benefit classification 
performance and accuracy. With the increase in spatial resolution, single pixels no longer capture the 
characteristics of classification targets. The increase in intra-class spectral variability causes a reduction of 
statistical reparability between classes with traditional pixel-based classification approaches. Consequently, 
classification accuracy is reduced and the classification results show a salt-and-pepper effect, with individual 
pixels classified differently from their neighbors. To overcome this so-called H-resolution problem, some pixel-
based methods have already been implemented, mainly consisting of three categories: (a) image pre-
processing, such as low-pass filter and texture analysis, (b) contextual classification, and (c) post-classification 
processing, such as mode filtering, morphological filtering, rule-based processing, and probabilistic relaxation. 
A common aspect of these methods is that they incorporate spatial information to characterize each class 
using neighborhood relationships. 
 

The segmentation is a process which extracts the outline of the ground objects by defining 
homogenous regions. Most of the methods only use the intensity of each pixel to define the regions, but 
produce very noisy segmentations, particularly with the high resolution satellite images. Some algorithms now 
include contextual information in the process to reduce the heterogeneity of the segmentations. In some of 
them textural information extracted from the image is also used. The segmentation step is generally made 
using Stockwell Transform (S Transform). We first have the pre-processing, in which we select the features to 
use and eventually modify or re-scale the data. The second part is the initialization of the segmentation 
algorithm, if needed. Finally the third part is the segmentation itself.  
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FLOW GRAPH 
 

 
 

EXPERIMENTAL METHOD AND ALGORITHM USED 
 

 

MEDIAN FILTER 
 

The main idea of the median filter is to run through the signal entry by entry, replacing each entry 
with the median of neighboring entries. The pattern of neighbors is called the "window", which slides, entry by 
entry, over the entire signal. For 1D signal, the most obvious window is just the first few preceding and 
following entries, whereas for 2D (or higher-dimensional) signals such as images, more complex window 
patterns are possible (such as "box" or "cross" patterns). Note that if the window has an odd number of 
entries, then the median is simple to define it is just the middle value after all the entries in the window are 
sorted numerically. For an even number of entries, there is more than one possible median, see median for 
more details. Median filtering is one kind of smoothing technique, as is linear Gaussian filtering. All smoothing 
techniques are effective at removing noise in smooth patches or smooth regions of a signal, but adversely 
affect edges. Often though, at the same time as reducing the noise in a signal, it is important to preserve the 
edges. Edges are of critical importance to the visual appearance of images, for example. For small to moderate 
levels of (Gaussian) noise, the median filter is demonstrably better than Gaussian blur at removing noise whilst 
preserving edges for a given, fixed window size. However, its performance is not that much better than 
Gaussian blur for high levels of noise, whereas, for speckle noise and salt and pepper noise (impulsive noise), it 
is particularly effective. Because of this, median filtering is very widely used in digital image processing.  
 

a. Input Image   b. Median filter output image 
 

  
 
STOCK WELL TRANSFORMS (S TRANSFORM) 
 

The S-transform (ST) is a time-frequency representation known for its local spectral phase properties. 
A key feature of the S-transform is that it uniquely combines a frequency dependent resolution of the time-
frequency space with absolutely referenced local phase information. This allows one to define the meaning of 
phase in a local spectrum setting, and results in many advantageous characteristics. It also exhibits a frequency 
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invariant amplitude response, in contrast to the wavelet transform The S-transform is shown to have 
absolutely referenced phase information, a quality that the continuous wavelet transform is lacking. The S-
transform is shown to have a frequency invariant amplitude response in contrast to the continuous wavelet 
transform which attenuates high frequency signals relative to the low frequency signals. The S-transform (ST) 
is similar to a continuous wavelet transform in having progressive resolution but unlike the wavelet transform, 
the S-transform retains absolutely referenced phase information and has a frequency invariant amplitude 
response. Absolutely referenced phase information means that the phase information given by the S-
transform refers to the argument of the co sinusoid at zero time (which is the same meaning of phase given by 
the Fourier transform). The S-transform defines what local phase means in an intuitive way, at a peak in local 
spectral amplitude (indicating a quasimonochromatic signal), as well as off peak, where the rate of change of 
the phase leads to a channel Instantaneous Frequency analysis. The S-transform not only estimates the local 
power spectrum, but also the local phase spectrum. It is also applicable to the general complex valued time 
series. It is often useful to think of the time series as a single vector in an N-dimensional vector space. The 
basis vectors of this time series in the time domain are the vectors (1,0,0,...,0), (0,1,0,...,0) and so on. The 
action of the Fourier transform is simply a change of basis on the time series, from these delta function basis 
vectors (time domain), to sinusoidal basis vectors (frequency domain). The time series itself, which is a defined 
single vector in this N-dimensional vector space, remains unchanged. One of the reasons that the Fourier 
transform is ubiquitous in the analysis of geophysical phenomena is that the sinusoidal basis functions are the 
solution to the mathematical equations describing a small perturbation of a physical system about a stable 
equilibrium, and thus provides a suitable framework for studying such phenomena. Also a number of 
theoretical predictions concerning the evolution of such systems are easily couched in terms of Fourier theory. 
Thus changing the representation of the time series may present the information contained in the time series 
in a more easily assimilated form. The S-transform produces a time-frequency representation of a time series. 
It uniquely combines a frequency dependent resolution with simultaneously localizing the real and imaginary 
spectra. 
 
Segmentation output 
 

  
 
FEATURE SELECTION 
 

After the segmentation by the modified graph cut theory, features are extracted from the segmented 
regions. Feature Extraction is of vital importance because on the basis of extracted features the maximum 
likelihood classifier will be trained and the final classification is carried out. The features extracted include 
Standard deviation. The mean value is calculated by the formula:  
 

 
 

Where, j I is intensity of the pixels of the image  
D is the number of pixels in the segment.  
 

Image intensity is the most used feature in the segmentation methods. Satellite images are usually 
multi-spectral, which means that the image is made up of several bands. For example a Quick bird image 
consists of four bands: blue, green, red and near infrared. The intensity of each band can be extracted, we can 
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then use four intensity features. Some ground objects are better defined with their texture than with their 
intensity. For example, with an intensity-based segmentation a forest will be divided into several homogenous 
parts, which is not the case of texture based segmentation. Although the texture is not directly available, it can 
be extracted from image intensity.  
 

Feature Extraction output 
 

 
 

MAXIMUM LIKELIHOOD CLASSIFICATION 
 

Maximum Likelihood classification (ML) is a supervised classification method which is based on the 
Bayes theorem. It makes use of a discriminated function to assign pixel to the class with the highest likelihood. 
Class mean vector and covariance matrix are the key inputs to the function and can be estimated from the 
training pixels of a particular class. In this study, we used ML to classify a diverse tropical land covers recorded 
from Landsat 5 TM satellite. The classification is carefully examined using visual analysis, classification 
accuracy, and band correlation and decision boundary. The results show that the separation between mean of 
the classes in the decision space is to be the main factor that leads to the high classification accuracy of ML. 
Each pixel is assigned to the class with the highest likelihood or labeled as unclassified if the probability values 
are all below a threshold set by the user.  
 

The general procedures in ML are as follows:  
 

 The number of land cover types within the study area is determined.  

 The training pixels for each of the desired classes are chosen using land cover information for the 
study area. For this purpose, the Jeffries-Matusita (JM) distance can be used to measure class 
reparability of the chosen training pixel.  

 The training pixels are then used to estimate the mean vector and covariance matrix of each class.  

 Finally, every pixel in the image is classified into one of the desired land cover types or labeled as 
unknown.  

 In ML classification, each class is enclosed in a region in multispectral space where its discriminated 
function is larger than that of all other classes.  

 

These class regions are separated by decision boundaries, where, the decision boundary between class i and j 
occurs when:  
 

Training areas were established by choosing one or more polygons for each class. Pixels fall within the 
training area were taken to be the training pixels for a particular class. In order to select a good training area 
for a class, the important properties taken into consideration are its uniformity and how well they represent 
the same class throughout the whole image. Class reparability of the chosen training pixels was determined by 
means of the JM distance. Fifty pairs have JM distance between 1.9 and 2.0 indicating good reparability, four 
from 1.0 to 1.9 indicating moderate reparability and one less than 1.0 indicating poor reparability. The worst 
reparability, possessed by the urban – industry pair (0.947), was expected since both have quite similar 
spectral characteristics. For each class, these training pixels provide values from which to estimate the mean 
and covariances of the spectral bands used. This information is to be used by the ML classifier to assign pixels 
to a particular class. The outcome of ML classification after assigning the classes with suitable colors, coastal 
swamp forest (green), dry land forest (blue), oil palm (yellow), rubber (cyan), cleared land (purple), coconut 
(maroon), bare land (orange), urban (red), industry (grey), sediment plumes (sea green) and water (white). 
Clouds and their shadows are masked black. The areas in terms of percentage and square kilometers were also 
computed; the classes with the largest area are oil palm, cleared land and industry. Although being similar, 
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coastal swamp forest and dry land forest can be clearly seen in the south-west and northeast of the classified 
image, as indicated by the reference map. Coastal swamp forest covers most of the Island and coastal regions 
in the south-west of the scene. Most of the dry land forest can be recognized as a large straight-edged region 
in the north-east. Oil palm and urban dominate the northern and southern parts respectively. Rubber appears 
as scattered patches that mostly are surrounded by oil palms. Industry can be recognized as patches near the 
urban areas, especially in the south-west and north-east. Coconut can be seen in the coastal area in the north-
west of the image. A quite large area of bare land can be seen in the east, while cleared land can be seen 
mostly in the north, south and south-east of the image. The most critical setting for the classification step is 
probably the choice of the input data, and more precisely the choice of the relevant features. Actually, for 
each class there are some relevant and some useless features. If the user chooses to perform the classification 
step with all the presented features, the results will probably not be satisfying. The problem is that the useless 
features reduce the importance of the relevant ones, resulting in a ineffective classification.  
 

The feature selection is an essential step to ensure the best results. One of the possible methods is to 
let the user choose which features he wants to use. However, it is very difficult to know which features are 
relevant or not, because it is generally not observable. In the following section we will propose a feature 
selection method combining two techniques, the cross-validation and the sequential generation.  
 

The maximum likelihood classifier is one of the most popular methods of classification in remote 
sensing, in which a pixel with the maximum likelihood is classified into the corresponding class. The likelihood 
Lk is defined as the posterior probability of a pixel belonging to class k.  
 

Lk = P(k/X) = P(k)*P(X/k) /P(i)*P(X/i) 
 

where P(k) : prior probability of class k  
 

P(X/k) : conditional probability to observe X from class k, or probability density function. 
 

Usually P(k) are assumed to be equal to each other and P(i)*P(X/i) is also common to all classes. Therefore Lk 
depends on P(X/k) or the probability density function. For mathematical reasons, a multivariate normal 
distribution is applied as the probability density function. In the case of normal distributions, the likelihood can 
be expressed as follows.  
 

 
 

where n: number of bands  
X: image data of n bands  
Lk(X) : likelihood of X belonging to class k  
k : mean vector of class k  
k : variance-covariance matrix of class k 
 

Maximum likelihood classifier map 
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RESULTS, DISCUSSIONS AND PERFORMANCE ANALYSIS 

 
The choice of the classifier is not obvious and strongly depends on the data. Among the supervised 

classifiers, a study assessed that the support vector machine is generally more effective than neural network 
and maximum likelihood classifiers. According to this study, support vector machine is often considered to be 
the best compromise between results and complexity. However we have to keep in mind that for neural 
network and support vector machine classifiers the choice of the internal parameters is essential to ensure 
good results and is sometimes very hard, while the Mahalanobis distance classifier for example does not need 
any parameter adjustment. One of the main goals of this study is to evaluate the need of a prior segmentation 
for the classification. We found much remote sensing classification software, but those which include a prior 
segmentation are uncommon. Most of them only perform pixel-based classification. The library of classifiers 
used in these software’s is almost always the same: unsupervised classifiers (K-means) and supervised 
classifiers (maximum likelihood, K-nearest neighbors, Mahalanobis distance, and sometimes neural network). 
For supervised classification, testing areas are selected by the user, or the specifications of the classes are 
chosen from a library of pre-defined values. It is also important to note that some of this software allows doing 
different levels of classification. For example we can create a classifier with two levels, the first one separating 
water and land, and a second step only for land areas separating urban and forest regions 
 

DISCUSSION 
 

The results presented above allow us to do some conclusions on the segmentation step. The S-
Transform algorithm used for the segmentations seems to be an effective method. The qualitative evaluation 
shows that the results of segmentation are good and provide very few noises. Moreover the basic principles of 
this method allow to segment simultaneously small and large areas, thus improving the conservation of the 
geometry. The quantitative evaluation proves that the error caused by the segmentation is very small, which 
confirms the visual observations. Although quantitative evaluations were not performed on other type of 
images, user can suppose with the help of the visual observations that this method also works for Aster shots, 
and probably for other types too. However the effectiveness of the segmentation algorithms depends on the 
quality and the quantity of information of the image. The comparison of our segmentation results with an E-
cognition segmentation demonstrated that the accuracy of both methods is quite equivalent. However, when 
performing segmentation with E-cognition, the user must select the size of the segments. This method then 
provides segments with equal size, which is not representative of the reality. From a quantitative point of 
view, user can use more number of components to reduce the error. However, we must keep in mind that the 
more the number of components, the more the segments, which can lead to an over-segmentation. In other 
terms, the real regions of the image will be divided into several smaller parts, decreasing the information 
contained in the features extracted from these parts, and reducing the performance of the classification. It is 
then very important to find a compromise between geometry and accuracy to ensure the best classification 
results. Finally, note that the S-Transform algorithm would not provide satisfactory results if the pre-
processing and the initialization were not properly performed. The two prior steps presented for the 
segmentation are as important as the segmentation itself. By using the suggested method for pre-processing 
and initialization, the probability of finding good segmentation results is high. When we look at the manually 
classified image, it seems obvious that the classes do not have the same spectral and geometrical 
characteristics. For example, we can say that the compactness is relevant for urban areas, since these regions 
are very elongated. On the contrary, farming areas do not present singularities in shape features. We can then 
say that each class has its own set of relevant features. The principle of the multi-level method is to divide the 
classification into several levels. Each level discriminates one class c from the remaining ones, and excludes the 
regions belonging to this class for the next level. Then the same method is applied to the remaining regions, 
until all the classes are determined. For each level, only the relevant features are used, so that each class is 
constructed with its best features. By its definition the support vector machine is the most appropriate for one 
against the rest classification. We evaluated the potential of this method for the training set. We can see that 
shape features are essentially used for urban areas, as expected. The individual scores are very good, and by 
combining these classification levels in the order “Urban, Farming 1, Scarce vegetation, Wooded, Open land; 
Farming 2”, we obtained a global classifier accuracy of 84.6 percent. The improvement comparing to the 
classical support vector machine classifier (79.5 percent) is not really significant. Moreover this method 
requires more time and there is a lot of parameters to estimate. Therefore, we require executing the satellite 
image classification using maximum likelihood classifier. 
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CONCLUSION 

 
In this paper, a parametric supervised classification algorithm based on Maximum Likelihood applied 

to LIDAR data using data fusion is presented. Several bands such as first, last echo and intensity LIDAR data and 
co-registered line scanner bands such as aerial and near infra-red photos are employed to build up a feature 
space. Four classes are classified and their individual accuracy is assessed. The results show that detached 
objects (buildings, vegetation) and bare earth are correctly classified up to 88.17%. The performance of class 
car, however, shows potential for further improvement due to its ambiguous appearance within the different 
features and the limited number of samples which can be collected compared to other classes. The aim of this 
paper is to provide some classification tools for remote sensing images, and we can affirm that this aim was 
successfully achieved. For the segmentation step we demonstrated the effectiveness of the S-Transform 
algorithm, both from the qualitative and quantitative points of view. Some improvements could also be added 
to this method. A post-processing could be inserted to suppress the noise in the homogenous regions. The 
segmentation step could also be improved in order to increase the potential of the classification step. 
However, due to the limits imposed by remote sensing acquisition systems, we do not think that exceptional 
progress could be provided to this classification process. 
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