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ABSTRACT 
 

The 5-HT2C receptor binding affinities of the isoindolone derivatives have been quantitatively analyzed 
in terms of Dragon descriptors. The derived QSAR models have provided rationales to explain the binding 
affinity of titled compounds. The associations of atomic mass to the highest eigenvalue n.2 and lowest 
eigenvalue n.5 of the Burden matrix (BEHm2 and BELm5, respectively),  atomic van der Waals volume to  path 
length 2 and 8 of the Moran autocorrelations (MATS2v and MATS8v) and path length 2 of Geary 
autocorrelation (GATS2v), polarizability to the highest eigenvalue n.1 and n.6 of the Burden matrix (BEHp1 and 
BEHp6) and Sanderson electronegativity to path length 4 of Geary autocorrelation (GATS4e) have shown the 
prevalence of atomic properties to explain the binding affinity. Absence of R--CR--R type structural fragment 
(C-025) in a molecular structure and a lower values of path/walk 4 - Randic shape index (PW4) and Balaban Y 
index (Yindex) are favorable to the activity. The derived models and participating descriptors in them have 
suggested that the substituents of isoindolone moiety have sufficient scope for further modification. 
Keywords: QSAR, isoindolones, 5-HT2C ligands, binding affinity, combinatorial protocol in multiple linear 
regression (CP-MLR).  
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INTRODUCTION 
 

The 5-HT2C receptor is one of 14 distinct serotonin receptor subtypes. Two receptors (the 5-HT2A and 
5-HT2B) are closely related to the 5HT2C and share considerable sequence homology. The   activation of central 
5-HT2A receptors is a cause for a number of adverse central nervous system effects of nonselective 
serotonergic drugs such as changes in perception and hallucination. It is hypothesized that activation of 5-HT2B 
receptors which are located in the cardiovascular system result in the heart valve disease and pulmonary 
hypertension associated with the use of drugs that act via serotonergic mechanisms. The modulation of the 5-
HT2C receptor is of considerable interest in the area of neuropsychiatric disorders [1]. The 5-HT2C receptor class 
GSK ligands which are based on several alternative templates have been investigated and disclosed. [2-4]. A 
novel series of isoindolone derivatives has been reported by Hamprecht et.al [5] as potent and selective 5-HT2C 
antagonists. The reported isoindolone derivatives are a result of two independent approaches. From a 
medicinal chemistry point of view the isoindolone template allowed the incorporation of the carbon–carbon 
double bond of an earlier dihydropyrrolone series in an aromatic system within a comparatively simple and 
compact motif. Furthermore, the in silico screening approach of the corporate database using a 5-HT2C 
pharmacophore model resulted in the identification of a related structure containing this template.  

 
In view of the importance of 5-HT2C antagonists in the clinical management of several disorders, a 

quantitative structure–activity relationship is attempted on the binding affinities of these isoindolone 
derivatives. The present study is aimed at rationalizing the substituent variations of these analogues to provide 
insight for the future endeavours. 
 

MATERIALS AND METHODS 
 
Chemical structure database and biological activity 
 

This study comprises a chemical structure database of reported thirty one isoindolone derivatives. 
The binding affinities (pKi data) of these compounds were determined using [

3
H]mesulergine displacement in 

HEK293 cells with stable expression of human 5-HT2C receptor in analogy to the procedure described by Wood 
et al. [6]. The structural variations and the binding affinities of titled compounds have been given in Table 1. 
The reported activity data has been used for subsequent QSAR analyses as the response variables. For the 
purpose of modeling all 31 analogues have been divided into training and test sets. Out of the 31 analogues, 
nearly one fifth compounds (06) have been placed in the test set for the validation of derived models. The 
training and test set compounds are also listed in Table 1.  

 
Table 1: Structures

a
, observed and modeled 5-HT2C binding affinities of the isoindolone derivatives 

N OMe

O

R

O

X

 

Cpd. X R pKi 

   Obsd
a 

Eq. (14) Eq. (15) Eq. (16) Eq. (17) 

1
b 

H N H

 

7.3 6.73 6.71 6.79 6.64 

2 4-Cl N H

 

6.6 6.73 6.83 7.07 6.82 

3 4-Cl N

 

6.9 7.31 7.45 7.39 7.33 

4 5-Cl N H

 

7.3 7.17 7.14 7.11 7.28 
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5 5-Cl N

 

7.6 7.79 7.78 7.55 7.83 

6 6-Cl N H

 

7.8 7.32 7.19 7.27 7.34 

7 6-Cl N

 

7.7 7.84 7.78 7.57 7.83 

8
b 

7-Cl N H

 

8.4 7.80 7.64 7.99 7.59 

9 7-Cl N

 

8.8 8.31 8.21 8.25 8.05 

10 7-F N H

 

7.1 7.67 7.53 7.57 7.44 

11 7-Br N

 

9.1 8.71 9.20 8.84 9.15 

12 7-Me N

 

8.6 8.26 8.23 8.21 8.13 

13 7-CF3 N

 

8.8 8.97 8.85 9.02 9.11 

14 7-CN N

 

8.0 8.41 8.44 8.54 8.09 

15
b 

7-OMe N H

 

6.7 6.77 6.88 7.42 6.72 

16 3-Me, 7-Cl N

 

8.9 9.10 9.12 9.10 8.73 

17
 b

 4-F,7-CF3 N

 

8.2 8.34 8.50 8.71 8.76 

18 4,5-F2,7-Cl N

 

8.7 8.52 8.49 8.55 8.31 

19 5,6-Cl2 N

 

8.3 8.21 8.16 8.00 8.34 

20 5,7-Cl2 N

 

8.8 9.06 8.86 8.99 8.71 

21 6,7-Cl2 N

 

9.0 8.77 8.58 8.79 8.61 

22 5,6-Cl2,7-Me N

 

8.6 8.47 8.62 8.73 8.62 

23
b 

5,7-Cl2,6-Me N

 

8.9 8.65 8.15 8.43 8.35 

24 5-F,7-CF3 N

 

9.4 9.08 9.04 9.20 9.37 
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25 5,7-Me2 N

 

8.5 8.90 8.57 8.35 8.71 

26 5,7-Cl2 
N

 

8.6 8.14 8.24 8.39 8.20 

27 5,7-Cl2 
N

 

8.0 8.25 8.30 8.33 8.50 

28 5,7-Cl2 N

 

8.2 7.98 8.32 8.01 8.53 

29 5,7-Cl2 N

 

8.7 8.98 9.07 8.93 8.95 

30
 b

 5,7-Cl2 N

 

8.6 8.71 8.72 8.83 8.91 

31 5,7-Cl2 N O

 

7.9 7.97 7.89 8.12 7.92 

a
Reference [5], 

b
Compounds included in test set. 

Theoretical molecular descriptors 
 

Table 2:  Dragon descriptor classes used along with their definition and scope for modeling the binding affinity of 
isoindolone derivatives 

 

Descriptor class (acronyms)
 

Definition and scope 

Constitutional 
(CONST) 

Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

Topological 
(TOPO) 

2D-descriptor from molecular graphs and independent conformations 

Molecular walk counts 
(MWC) 

2D-descriptors representing self-returning walks counts of different 
lengths 

Modified Burden eigenvalues 
(BCUT) 

2D-descriptors representing positive and negative eigenvalues of the 
adjacency matrix, weights the diagonal elements and atoms 

Galvez topological charge indices (GALVEZ) 
2D-descriptors representing the first 10 eigenvalues of corrected 

adjacency matrix 

2D-autocorrelations 
(2D-AUTO) 

Molecular descriptors calculated from the molecular graphs by summing 
the products of atom weights of the terminal atoms of all the paths of the 

considered path length (the lag) 

Functional groups 
(FUNC) 

Molecular descriptors based on the counting of the chemical functional 
groups 

Atom centered fragments 
(ACF) 

Molecular descriptors based on the counting of 120 atom centered 
fragments, as defined by Ghose-Crippen 

Empirical 
(EMP) 

1D-descriptors represent the counts of non-single bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in an 

H-depleted molecule 

Properties 
(PROP) 

1D-descriptors representing molecular properties of a molecule 

 
The structures of the compounds under study have been drawn in 2D ChemDraw [7]. The drawn 

structures were then converted into 3D modules using the default conversion procedure implemented in the 
CS Chem3D Ultra. The energy of these 3D-structures was minimized in the MOPAC module using the AM1 
procedure for closed shell systems. This will ensure a well defined conformer relationship among the 
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compounds of the study. All these energy minimized structures of respective compounds have been ported to 
DRAGON software [8] for the computation of descriptors for the titled compounds (Table 1). This software 
offers several hundreds of descriptors from different perspectives corresponding to 0D-, 1D-, and 2D-
descriptor modules. The outlined modules comprised of ten different classes, namely, the constitutional 
(CONST), the topological (TOPO), the molecular walk counts (MWC), the BCUT descriptors (BCUT), the Galvez 
topological charge indices (GALVEZ), the 2D autocorrelations (2D-AUTO), the functional groups (FUNC), the 
atom-centered fragments (ACF), the empirical descriptors (EMP), and the properties describing descriptors 
(PROP). For each of these classes the DRAGON software computes a large number of descriptors which are 
characteristic to the molecules under multi-descriptor environment. The definition and scope of these 
descriptor’s classes is given in Table 2. The combinatorial protocol in multiple linear regression [9]  procedure 
has been used in the present work for developing QSAR models. Before the application of CP-MLR procedure, 
all those descriptors which are intercorrelated beyond 0.90 and showing a correlation of less than 0.1 with the 
biological endpoints (descriptor vs. activity, r < 0.1) were excluded. This has reduced the total dataset of the 
compounds from 450 to 98 descriptors as relevant ones for the binding activity. A brief description of the 
computational procedure is given below. 

 
Model development 
 

The combinatorial protocol in multiple linear regression (CP-MLR) is a ‘filter’ based variable selection 
procedure for model development in QSAR studies. It involves selected subset regressions. In this procedure a 
combinatorial strategy with appropriately placed ‘filters’ has been interfaced with MLR to result in the 
extraction of diverse structure-activity models, each having unique combination of descriptors from the 
dataset under study. In this, the contents and number of variables to be evaluated are mixed according to the 
predefined confines. Here the ‘filters’ are significance evaluators of the variables in regression at different 
stages of model development. Of these, filter-1 is set in terms of inter-parameter correlation cutoff criteria for 
variables to stay as a subset (filter-1, default value 0.3 and upper limit ≤ 0.79). In this, if two variables are 
correlated higher than a predefined cutoff value the respective variable combination is forbidden and will be 
rejected. The second filter is in terms of t-values of regression coefficients of variables associated with a subset 
(filter-2, default value 2.0). Here, if the ratio of regression coefficient and associated standard error of any 
variable is less than a predefined cutoff value then the variable combination will be rejected. Since successive 
additions of variables to multiple regression equation will increase successive multiple correlation coefficient 
(r) values, square-root of adjusted multiple correlation coefficient of regression equation, r-bar, has been used 
to compare the internal explanatory power of models with different number of variables. Accordingly, a filter 
has been set in terms of predefined threshold level of r-bar (filter-3, default value 0.71) to decide the variables’ 
‘merit’ in the model formation. Finally, to exclude false or artificial correlations, the external consistency of the 
variables of the model have been addressed in terms of cross-validated R

2
 or Q

2 
criteria from the leave-one-out 

(LOO) cross-validation procedure as default option (filter-4, default threshold value 0.3 ≤ Q
2 

≤ 1.0). All these 
filters make the variable selection process efficient and lead to unique solution. In order to collect the 
descriptors with higher information content and explanatory power, the threshold of filter-3 was successively 
incremented with increasing number of descriptors (per equation) by considering the r-bar value of the 
preceding optimum model as the new threshold for next generation.  

 
Model validation 
 

In this study, the data set is divided into training set for model development and test set for external 
prediction. Goodness of fit of the models was assessed by examining the multiple correlation coefficient (r), 
the standard deviation (s), the F-ratio between the variances of calculated and observed activities (F). A 
number of additional statistical parameters such as the Akaike’s information criterion, AIC [10,11], the Kubinyi 
function, FIT [12,13], and the Friedman’s lack of fit, LOF [14] (Eqs. 1-3) have also been derived to evaluate the 
best model.  
 

2

RSS (n p )
AIC

(n p )

 


  

                                              (1) 
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2

2 2

r (n k 1)
FIT

(n k ) (1 r )

  


  
                                                             (2) 

 

2

RSS
nLOF

k(d 1)
1

n


 

 
 

                                                                 (3) 

where, RSS is the sum of the squared differences between the observed and the estimated activity values, k is 
the number of variables in the model, p' is the number of adjustable parameters in the model, and d is the 
smoothing parameter. The AIC takes into account the statistical goodness of fit and the number of parameters 
that have to be estimated to achieve that degree of fit. The FIT, closely related to the F-value (Fisher ratio), 
was proved to be a useful parameter for assessing the quality of the models. The main disadvantage of the F-
value is its sensitivity to changes in k (the number of variables in the equation, which describe the model), if k 
is small, and its lower sensitivity if k is large. The FIT criterion has a low sensitivity toward changes in k-values, 
as long as they are small numbers, and a substantially increasing sensitivity for large k-values. The model that 
produces the minimum value of AIC and the highest value of FIT is considered potentially the most useful and 
the best. The LOF takes into account the number of terms used in the equation and is not biased, as are other 
indicators, toward large numbers of parameters. A minimum LOF value infers that the derived model is 
statistically sound.  
 
 The internal validation of derived model was ascertained through the cross-validated index, Q

2
, from 

leave-one-out and leave-five-out procedures. The LOO method creates a number of modified data sets by 
taking away one compound from the parent data set in such a way that each observation has been removed 
once only. Then one model is developed for each reduced data set, and the response values of the deleted 
observations are predicted from these models. The squared differences between predicted and actual values 
are added to give the predictive residual sum of squares, PRESS. In this way, PRESS will contain one 
contribution from each observation. The cross-validated Q

2
LOO value may further be calculated as  

 

2

LOO
PRESSQ 1

SSY
                                                        (4) 

 

where, SSY represents the variance of the observed activities of molecules around the mean value. In leave-
five-out procedure, a group of five compounds is randomly kept outside the analysis each time in such a way 
that all the compounds, for once, become the part of the predictive groups. A value greater than 0.5 of Q

2
-

index hints toward a reasonable robust model.  
 
 The external validation or predictive power of derived model is based on test set compounds. The 
squared correlation coefficient between the observed and predicted values of compounds from test set, r

2
Test, 

has been calculated as 
 

2

Pred(Test) (Test)2

Test 2

(Test) (Training)

(Y Y )
r 1

(Y Y )


 






                           (5) 

where, YPred(Test) and Y(Test) indicate predicted and observed activity values, respectively of the test-set 

compounds, and (Training) indicate mean activity value of the training set. r
2

Test is the squared correlation 

coefficient between the observed and predicted data of the test-set. A value greater than 0.5 of r
2

Test suggests 
that the model obtained from training set has a reliable predictive power.  
 
Y-randomization  
 

Chance correlations, if any, associated with the CP-MLR models were recognized in randomization 
test [15,16] by repeated scrambling of the biological response. The data sets with scrambled response vector 
have been reassessed by multiple regression analysis (MRA). The resulting regression equations, if any, with 
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correlation coefficients better than or equal to the one corresponding to the unscrambled response data were 
counted. Every model has been subjected to 100 such simulation runs. This has been used as a measure to 
express the percent chance correlation of the model under scrutiny.  

RESULTS AND DISCUSSION 
 

In multi-descriptor class environment, exploring for best model equation(s) along the descriptor class 
provides an opportunity to unravel the phenomenon under investigation. In other words, the concepts 
embedded in the descriptor classes relate the biological actions revealed by the compounds. For the purpose 
of modeling study, 06 compounds have been included in the test set for the validation of the models derived 
from 25 training set compounds. A total number of 98 significant descriptors from 0D-, 1D- and 2D-classes 
have been subjected to CP-MLR analysis with default ‘filters’ set in it. Statistical models in two, three and four 
descriptor(s) have been derived successively to achieve the best relationship correlating 5-HT2C binding 
affinity. These models (with 98 descriptors) were identified in CP-MLR by successively incrementing the filter-3 
with increasing number of descriptors (per equation). For this the optimum r-bar value of the preceding level 
model has been used as the new threshold of filter-3 for the next generation.  

 
The selected models in two, three and four descriptors are presented below.  

pKi = 8.398 +1.468(0.417)BEHp1 –1.619(0.417)GATS4e  

n = 25, r = 0.779, s = 0.476, F = 17.052, FIT = 1.176, LOF = 0.282, AIC = 0.288, 

Q
2

LOO = 0.496, Q
2

L5O = 0.478, r
2

randY(sd) = 0.102(0.090), r
2

Test
 
= 0.544                     (6) 

 
pKi = 7.006 +1.132(0.390)BEHm6 +1.358(0.424)BEHe4  
n = 25, r = 0.730, s = 0.519, F = 12.577, FIT = 0.867, LOF = 0.336, AIC = 0.343, 
Q

2
LOO = 0.402, Q

2
L5O = 0.385, r

2
randY(sd) = 0.069(0.069), r

2
Test

 
= 0.566                     (7) 

 
pKi = 7.827 +1.053(0.455)BEHv5 +1.044(0.422)BEHp1 –1.674(0.382)GATS4e  
n = 25, r = 0.829, s = 0.435, F = 15.397, FIT = 1.358, LOF = 0.275, AIC = 0.261, 
Q

2
LOO = 0.560, Q

2
L5O = 0.502, r

2
randY(sd) = 0.121(0.085), r

2
Test

 
= 0.518                   (8) 

 
pKi = 7.938 +1.330(0.386)BEHp1 +0.912(0.396)MATS8v –1.553(0.383)GATS4e  
n = 25, r = 0.828, s = 0.435, F = 15.345, FIT = 1.354, LOF = 0.275, AIC = 0.261, 
Q

2
LOO = 0.524, Q

2
L5O = 0.491, r

2
randY(sd) = 0.121(0.093), r

2
Test

 
= 0.536                   (9) 

 
pKi = 9.358 +3.629(0.684)BEHp1 –1.509(0.471)BEHp6 –1.969(0.628)MATS2v 
         –2.714(0.467)GATS4e 
 n = 25, r = 0.874, s = 0.387, F = 16.198, FIT = 1.580, LOF = 0.259, AIC = 0.224, 
Q

2
LOO = 0.599, Q

2
L5O = 0.541, r

2
randY(sd) = 0.189(0.116), r

2
Test

 
= 0.865                   (10) 

 
pKi = 8.510 +1.943(0.424)BEHp1 –1.396(0.561)MATS2v +1.155(0.368)MATS8v 
         –2.167(0.422)GATS4e  
n = 25, r = 0.872, s = 0.390, F = 15.893, FIT = 1.550, LOF = 0.263, AIC = 0.228, 
Q

2
LOO = 0.628, Q

2
L5O = 0.590, r

2
randY(sd) = 0.163(0.105), r

2
Test

 
= 0.575                   (11) 

 
pKi = 9.679 –0.927(0.315)PW4 +2.244(0.448)BEHp1 –1.560(0.592)MATS2v  
          –2.501(0.457)GATS4e  
n = 25, r = 0.866, s = 0.398, F = 15.070, FIT = 1.470, LOF = 0.274, AIC = 0.237, 
Q

2
LOO = 0.642, Q

2
L5O = 0.609, r

2
randY(sd) = 0.161(0.093), r

2
Test

 
= 0.546                   (12) 

 
pKi =  7.753 –0.754(0.283)BELm6 +1.727(0.395)BEHp1 –1.574(0.370)GATS4e  
           +0.967(0.362)MLOGP  
n = 25, r = 0.865, s = 0.399, F = 14.932, FIT = 1.456, LOF = 0.275, AIC = 0.239, 
Q

2
LOO = 0.570, Q

2
L5O = 0.617, r

2
randY(sd) = 0.173(0.091), r

2
Test

 
= 0.595                   (13) 
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In above regression equations, the values given in the parentheses are the standard errors of the 
regression coefficients. The r

2
randY(sd) is the mean random squared multiple correlation coefficient of the 

regressions in the activity (Y) randomization study with its standard deviation from 100 simulations. In the 
randomization study (100 simulations per model), none of the identified models has shown any chance 
correlation. The signs of the regression coefficients suggest the direction of influence of explanatory variables 
in the models. 

 
The descriptors BEHp1, BEHe4, BEHv5, BEHm6, BELm6 and BEHp6 belong to BCUT class of Dragon 

descriptors. The BCUT descriptors are the first 8 highest and the lowest absolute eigenvalues, BEHwk and 
BELwk, respectively, for the modified Burden adjacency matrix. Here w refers to the atomic property and k to 
the eigenvalue rank. The ordered sequence of the highest and the lowest eigen values reflect upon the 
relevant aspects of molecular structure, useful for similarity searching. The signs of regression coefficients of 
BCUT descriptors BEHp1 (the highest eigenvalue n.1 of Burden Marix/weighted by atomic polarizabilities), 
BEHe4 (the highest eigenvalue n.4 of Burden Marix/weighted by atomic Sanderson electronegativities), BEHv5 
(the highest eigenvalue n.5 of Burden Marix/weighted by atomic van der Waals volumes) and BEHm6 (the 
highest eigenvalue n.6 of Burden Marix/weighted by atomic masses),  delineate that a higher value of these 
descriptors and a lower value of descriptors BEHp6 (the highest eigenvalue n.6 of Burden Marix/weighted by 
atomic polarizabilities) and BELm6 (the lowest eigenvalue n.6 of Burden Marix/weighted by atomic masses) is 
advantageous for activity.  The participated descriptor PW4 is from the TOPO class of Dragon descriptors. The 
TOPO class descriptors are based on a graph representation of the molecule and are numerical quantifiers of 
molecular topology obtained by the application of algebraic operators to matrices representing molecular 
graphs and whose values are independent of vertex numbering or labeling. They can be sensitive to one or 
more structural features of the molecule such as size, shape, symmetry, branching and cyclicity and can also 
encode chemical information concerning atom type and bond multiplicity. The negative correlation of 
descriptor PW4 (path/walk 4 - Randic shape index) to the binding activity advocate that a lower value of 
path/walk 4 - Randic shape index would be beneficiary to the activity.  

 
The descriptors MATS2v, MATS8v and GATS4e, in above models, are representative of 2D-AUTO class 

of Dragon descriptors. The 2D-AUTO descriptors have their origin in autocorrelation of topological structure of 
Broto-Moreau (ATS), of Moran (MATS) and of Geary (GATS). The computation of these descriptors involves the 
summation of different autocorrelation functions corresponding to the different fragment lengths and lead to 
different autocorrelation vectors corresponding to the lengths of the structural fragments. Also a weighting 
component in terms of a physicochemical property has been embedded in these descriptors. As a result, these 
descriptors address the topology of the structure or parts thereof in association with a selected 
physicochemical property. In these descriptors’ nomenclature, the penultimate character, a number, indicates 
the number of consecutively connected edges considered in its computation and is called as the 
autocorrelation vector of lag k (corresponding to the number of edges in the unit fragment). The very last 
character of the descriptor’s nomenclature indicates the physicochemical property considered in the weighting 
component for its computation. The participated descriptor MATS8v (Moran autocorrelation - lag 8 weighted 
by atomic van der Waals volumes) correlate positively to the activity and descriptors MATS2v (Moran 
autocorrelation - lag 2 weighted by atomic van der Waals volumes) and GATS4e (Geary autocorrelation - lag 4 
weighted by atomic Sanderson electronegativities) contribute negatively   to the activity. The positive 
correlation suggest the favorable conditions associated with lag 8 weighted by atomic van der Waals volumes 
and negative contribution hints at the unfavorable conditions associated with lag 2 and lag 4 weighted 
respectively, by atomic van der Waals volumes and Sanderson electronegativities.  

 
The other participated descriptor, MLOGP, in above models belong to PROP class. Descriptors from 

this class represent the molecular properties of a molecule. Descriptor MLOGP is   Moriguchi octanol-water 
partition coefficient (logP) of a molecule. It reflects upon the hydrophobic nature of a compound. The positive 
contribution of descriptor MLOGP to the activity recommends more hydrophobic character of a molecule for 
elevated binding affinity of titled compounds. 

 
The four descriptor models could estimate 76.38 percent variance in observed activity of the 

compounds. Considering the number of observation in the dataset, models with up to five descriptors were 
explored. A total number of 22 models, sharing 24 descriptors among them, were obtained through CP-MLR. 
All these 24 descriptors along with their brief meaning, average regression coefficients and total incidence are 
listed in Table 3, which will serve as a measure of their estimate across these models. The given below are 
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some five‐descriptor models for the activity. These models have accounted for up to 81.00 percent variance in 
the observed activities 
 
pKi = 9.928 –0.688(0.316)Yindex +3.515(0.630)BEHp1 –1.355(0.438)BEHp6  
          –2.329(0.599)MATS2v – 2.753(0.429)GATS4e  
n = 25, r = 0.900, s = 0.355, F = 16.335, FIT = 1.633, LOF = 0.266, AIC = 0.206, 
Q

2
LOO = 0.668, Q

2
L5O = 0.728, r

2
randY(sd) = 0.225(0.111), r

2
Test

 
= 0.795                   (14) 

 
pKi = 8.399 +0.858(0.410)BEHm2 +1.984(0.393)BEHp1 –1.553(0.524)MATS2v 
         +1.125(0.341)MATS8v –2.179(0.391)GATS4e  
n = 25, r = 0.897, s = 0.360, F = 15.735, FIT = 1.573, LOF = 0.274, AIC = 0.212, 
Q

2
LOO = 0.640, Q

2
L5O = 0.661, r

2
randY(sd) = 0.204(0.108), r

2
Test

 
= 0.577                   (15) 

 
pKi = 6.437 –1.416(0.370)BELm5 +4.745(0.891)BEHp1 +2.372(0.602)GATS2v  
          –2.164(0.374)GATS4e – 2.369(0.688)C-025 
n = 25, r = 0.897, s = 0.361, F = 15.674, FIT = 1.567, LOF = 0.275, AIC = 0.213, 
Q

2
LOO = 0.666, Q

2
L5O = 0.620, r

2
randY(sd) = 0.205(0.108), r

2
Test

 
= 0.613                   (16) 

 
pKi = 9.555 –0.935(0.287)PW4 +0.930(0.411)BEHm2 +2.292(0.409)BEHp1 
         –1.749(0.546)MATS2v –2.522(0.416)GATS4e  
n = 25, r = 0.896, s = 0.362, F = 15.547, FIT = 1.554, LOF = 0.277, AIC = 0.214, 
Q

2
LOO = 0.708, Q

2
L5O = 0.657, r

2
randY(sd) = 0.184(0.105), r

2
Test

 
= 0.530                   (17) 

 
Table 3: Descriptors

a
 identified for modeling the binding affinity of cyclic guanidines along with the average regression 

coefficient
b
, standard deviation and the total incidence. 

 
Descriptor Avg reg coeff(sd) 

total incidence 
Descriptor Avg reg coeff(sd) 

total incidence 
Descriptor Avg reg coeff(sd) 

total incidence 

Sv -4.538(0.000)1 nCL -0.649(0.127)4 nX 1.731(0.580)2 

Jhetp -1.089(0.000)1 PW4 -0.918(0.242)3 Yindex -0.724(0.030)3 

BEHm2 1.115(0.292)5 BEHm6 1.208(0.268)4 BELm5 -1.143(0.217)4 

BELm6 -0.569(0.000)1 BEHv3 2.438(2.050)2 BELv6 -1.181(0.169)4 

BEHe1 0.739(0.000)1 BEHp1 2.482(1.024)21 BEHp6 -1.222(0.188)2 

MATS2v -1.713(0.310)13 MATS8v 1.125(0.000)1 MATS4e 1.377(0.210)4 

MATS8e -1.166(0.330)4 GATS2v 1.645(0.493)4 GATS4e -2.372(0.263)18 

GATS8e 0.954(0.395)2 C-025 -1.515(0.739)3 MLOGP 0.927(0.166)3 
 

aThe descriptors are identified from the five parameter models emerged from CP-MLR protocol with filter-1 as 0.79; filter-2 as 2.0; filter-3 
as 0.84; filter-4 as 0.3 ≤ Q2 ≤ 1.0; number of compounds in the study are 25; CONST: Sv, sum of atomic van der Waals volumes (scaled on 
Carbon atom); nCL, number of chlorine atoms; nX, number of halogen atoms; TOPO: Jhetp, Balaban-type index from polarizability 
weighted distance matrix; PW4, path/walk 4 - Randic shape index; Yindex, Balaban Y index; BCUT: BEHm2, highest eigenvalue n. 2 of 
Burden matrix/ weighted by atomic masses; BEHm6, highest eigenvalue n. 6 of Burden matrix/ weighted by atomic masses; BELm5, lowest 
eigenvalue n. 5 of Burden matrix/ weighted by atomic masses; BELm6, lowest eigenvalue n. 6 of Burden matrix/ weighted by atomic 
masses; BEHv3, highest eigenvalue n. 3 of Burden matrix/ weighted by atomic van der Waals volumes; BELv6, lowest eigenvalue n. 6 of 
Burden matrix/ weighted by atomic van der Waals volumes; BEHe1, highest eigenvalue n. 1 of Burden matrix/ weighted by atomic 
Sanderson electronegativities; BEHp1, highest eigenvalue n. 1 of Burden matrix / weighted by atomic polarizabilities; BEHp6, highest 
eigenvalue n. 6 of Burden matrix / weighted by atomic polarizabilities; 2D-AUTO: MATS2v, Moran autocorrelation - lag 2/ weighted by 
atomic van der Waals volumes; MATS8v, Moran autocorrelation - lag 8 / weighted by atomic van der Waals volumes; MATS4e, Moran 
autocorrelation - lag 4 / weighted by atomic Sanderson electronegativities; MATS8e, Moran autocorrelation - lag  8/ weighted by atomic 
Sanderson electronegativities; GATS2v, Geary autocorrelation - lag 2/ weighted by atomic van der Waals volumes; GATS4e, Geary 
autocorrelation - lag 4 / weighted by atomic Sanderson electronegativities; GATS8e, Geary autocorrelation - lag 8/ weighted by atomic 
Sanderson electronegativities; ACF: C-025, R--CR--R; PROP: MLOGP, Moriguchi octanol-water partition coefficient (logP). bThe average 
regression coefficient of the descriptor corresponding to all models and the total number of its incidences; the arithmetic sign represents 
the sign of the regression coefficient in the models. 
 

In the randomization study (100 simulations per model), none of the identified models has shown any 
chance correlation. The values greater than 0.5 of Q

2
-index is in accordance to a reasonable robust QSAR 

model. The pKi values of training set compounds calculated using Equations (14) to (17) have been included in 
Table 1. These models are validated with an external test set of fifteen compounds listed in Table 1. The 
predictions of the test set compounds based on external validation are found to be satisfactory as reflected in 
the test set r

2
 (r

2
Test) values and the predicted activity values are also reported in Table 1. The plot showing 
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goodness of fit between observed and calculated activities for the training and test set compounds is given in 
Figure 1.  

 

          
 

    
 

        
 

      
 

Figure 1: Plot of observed versus calculated pKi values of the isoindolone derivatives. 

 
 The descriptors PW4, MATS2v, MATS8v, GATS4e, BEHp1 and BEHp6, which were emerged in models 
discussed earlier, have once again shown their importance in five parameter models and convey same 
inferences to the activity. The newly emerged descriptors, BEHm2 and BELm5, GATS2v, Yindex and C-025 are 
from BCUT, 2D-AUTO, TOPO and ACF (atom centered fragments) classes of Dragon descriptors, respectively. 
The ACF class descriptors are based on the counting of 120 atom centered fragments as defined by Ghose and 
Crippen. These are simple molecular descriptors defined as the number of specific atom types in a molecule. 
They are calculated by knowing the molecular composition and atom connectivities. Descriptor C-025 has 
shown negative correlation to the activity. Thus absence of R--CR--R (descriptor C-025) type structural 



ISSN: 0975-8585 

May – June  2015  RJPBCS   6(3)  Page No. 1735 

fragment in a molecular structure would be beneficiary to the activity. The descriptors, GATS2v (Geary 
autocorrelation - lag 2 weighted by atomic van der Waals volumes), and BEHm2 (the highest eigenvalue n.2 of 
Burden Marix/weighted by atomic masses) contributed positively to the activity suggesting that higher values 
of these descriptors would be supportive to enhance the activity. The descriptors Yindex (Balaban Y index) and 
BELm5 (the lowest eigenvalue n.5 of Burden Marix/weighted by atomic masses) have shown negative 
contribution to the activity advocating a lower value of these descriptors to augment the binding activity of 
isoindolone derivatives.  
   

CONCLUSIONS 

 

In conclusion, the present study has provided structure–activity relationships of the binding affinities 
of isoindolone derivatives to 5-HT2C receptor in terms of structural requirements. The binding affinity has, 
therefore become the function of the cumulative effect of different structural features which were identified 
in terms of individual descriptors.  

 
In order to improve the 5-HT2C receptor binding affinity of a compound, absence of R--CR--R type 

structural fragment in a molecular structure is advocated by descriptor C-025. A lower   value of the molecular 
topology and symmetry accounting parameters, path/walk 4 - Randic shape index (descriptor PW4) and 
Balaban Y index (descriptor Yindex) are favorable to the activity. The associations of atomic mass to the 
highest eigenvalue n.2 and lowest eigenvalue n.5 of the Burden matrix (BEHm2 and BELm5, respectively),  
atomic van der Waals volume to  path length 2 and 8 of the Moran autocorrelations (MATS2v and MATS8v) 
and path length 2 of Geary autocorrelation (GATS2v), polarizability to the highest eigenvalue n.1 and n.6 of the 
Burden matrix (BEHp1 and BEHp6) and Sanderson electronegativity to path length 4 of Geary autocorrelation 
(GATS4e) have shown the prevalence of atomic properties to explain the binding affinity. The derived models 
and participating descriptors in them have suggested that the substituents of isoindolone moiety have 
sufficient scope for further modification. 
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