
ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1492

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

Efficient and dynamic Parallel Job Scheduling for bioinformatics Data
Management in Data Grid Environment.

K Ashok Kumar1*, and C Chandrasekar2.

1
Department of Computer Science Engineering, Sathyabama University, Tamil Nadu, India.

2
Department of Computer Science, Periyar University, Tamil Nadu, India.

ABSTRACT

Recent years, the data storage and management are one of the foremost difficult issues within the
grid computing infrastructures ans its environment because of the vast quantity of data are transmitted
among the grid applications and also the operations are endlessly executed. Grid computing normally deals
with infinite amount of data and the traditional computing contains dedicated servers for data duplication and
data storage. To solve this problems raise in large data management and security threats, in this work suggest
a new method for distributed data storage and parallel processing of data in grid computing environment. In
our proposed study devising the concept of Central Grid Computing (CGC) is employed to manage both data
storage and extraction. CGC divides all grid data server into multiple geographically disseminated domains to
facilitate the locality and simplify the intra-domain data storage and management. Data stored in various
localities are searched in parallel mode and securely accessed and allow to share the data between various
grids by using cryptographic techniques. This research also proposes a database indexing algorithm for
identifying and locating and extract the essential data from servers which in turn improves the latency
involved in retrieving data from assorted geographical locations. From the overall finding of this research study
also proved that our proposed frame work may perform better in the handling of large data storage and
access than other existing frame work used in grid computing environments.
Keywords: Grid computing, Data management, Parallel Processing, S-IDEA algorithm, NB-Tree.

*Corresponding author

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1493

INTRODUCTION

Grid computing is a one of the most efficient technique used in emerging types of networks, servers,
storage systems, etc. and these networks, CPU cycles can be well used by combining pools of servers, number
of storage systems and networks are formed into single huge virtual system for sharing the data dynamically at
run time. These kinds of systems can be distributed to the globe and the grid is said to be heterogeneous,
which contains some persona, supercomputers and mainframes computers. The grid consists of huge number
of files, non-interactive tasks and in turn it can be viewed as distributed system. Grid computing distinguished
from conventional systems of high computing performance is as it collectively computes and nodes are loosely
joined together, geographically dispersed and heterogeneous [1]. A grid is utilized for a various purposes, only
one grid can be committed to a specific application and usually grids are frequently developed with the
purpose of middleware software libraries. Grid computing is an imminent technology and it is being used for
various type of business can gain more by utilize by information technology resources. The grid computing is a
flexible, safe, synchronized resource sharing between various collections of resources, individuals and
institutions. Grid computing provides the virtualization of scattered computing resources such as storage
capacity, network bandwidth, processing, and to build a single system image, enabling applications and users
to uninterrupted access to huge IT resources. The seamless access to a network of worldwide distributed
resources such as CPU cycles, input and output devices, storage capacity, whole applications, services and
more conceptual elements like certificates and licenses is the major advantage of Grid computing [2].

Computationally intensive problem can be resolved by various techniques and it can be categorized

into many tasks and it circulated over remote and local machines and finally results are grouped together from
individual systems using grid approach [Foster et al 2010]. All individual systems are usually various software
setup and few of the destination nodes may have high performance server. So we need to find the appropriate
way of fetch the large set of data such as genomic information, protein information, etc of living species. For
this technique requires an efficient data transfer from server to client nodes with seamless way. However the
size of data and accessibility population are keep on increasing and it looks hard to design a method or storage
system to handle the large-size data. This research chiefly focus on designing a system for large size data
handling in grid computing approach to resolve the various problems in sharing, storage and effective retrieval
of data. In addition to this, parallel processing and indexing the database were also proposed in this study.

RELATED WORK

The issues of parallel grid computing have been focused by many researchers of grid computing
domain. Charlotte proposed a new replication scheduler, a java oriented grid system for distributed and large
scale resources in [4]. The scheduler can assign the different tasks to the resources in a random way and it also
has the choice of continuously assigning tasks to the resources till any of its replicas is completed by grid
resources. [4]. In addition to the parallel applications consists of independent tasks, a shared memory
programming model is proposed in this work. It is fully depend on a memory management method called two
stage idempotent executions planning to ensure that containing numerous replicas for a job doesn’t breach
the semantics of single task implementation[43].

 These works focused on huge BoT applications consists of identical and independent tasks. They usually
considered computation costs and adopted multi-port stable communication models and stable
communication. In particularly Legrand et al. [20] and [19] developed centralized and decentralized
schedulers. Offline and online solutions for scheduling simultaneous BoT applications are presented by Benoit
et al [21]. As the aforementioned tasks are given theoretically huge solutions that depend on the impractical
considerations, Casanova et al. [22] proposed a more practical application model and calculated non-
clairvoyant heuristics based on abstract foundations. The above mentioned works builds a model to monitor
the multiple practical dynamic Grid surroundings [37].

PROPOSED SYSTEM

The European Grid Infrastructure (EGI) [25], European Middleware Initiative (EMI) [26] and World
Community Grid (WCG) [27] are real-world examples of grid computing environments. The main tasks of this
Grid infrastructures is resource and job management, a word here utilized to jointly represent a set of
procedures and problems related to the execution of tasks on Grid computing tasks. In order to manage their

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1494

resources and jobs, the proposed system suggested a new framework called Central Grid Computing (CGC)
that is split into two phases such as 1) Data Storage in Grid 2) Data Retrieval from Grid. The earlier is related to
the administrator who owns/maintains large datasets such as protein database, nucleotide database and bio-
medical datasets [44]. The later is related to the grid users who accesses the information stored in grid servers
like Search of protein database, Search a nucleotide database. The Fig.1 shows the working paradigm of the
proposed system. The administrator stores the details about users in grid storage servers via the central grid
computing server. Consequently the users query the grid system to acquire their personal information from
those grid servers.

Efficient method: To storage / locate the database

 Set id length of 13 bit id or more for database

 Set every two digits for locations and to identify the data base

 Use unique method (solution of problem identified) for find the required data base.

 When searching , use specific searching algorithm to make quick and search more easier (Indexing,
Creating an NB-Tree).

 Here apply the parallel computation algorithm for process faster.

This can be run parallel in the entire existing database to retrieve the massive information“our system
will retrieve information parallel from data sets and display the result quickly” *33+ *34+

Figure 1: Working Paradigm of the Proposed System

Data Storage in Grid

Grid computing services provide well support for data storage based on various categories to be
identified. Each and every service will be provided by only one system, or may constitute a collective set of
tasks executed by multiple systems, by many vendors. Here we consider that our grid servers are linked
through LAN and Internet technology.

Database Indexing

 The database indexing algorithms used for high dimensional data points usually contains hard to
implement algorithms and complex. This complexity may degrade the performance of the system. In this
paper, a simple, but effective indexing method called NB-Tree (Norm B-Tree) is proposed for high dimensional
data points of different dimension, using dimension reduction and improves the performance.

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1495

The NB-Tree structure uses a light mapping method for high dimensional data points of different
dimension and its is computationally economical. The fundamental plan of NB-Tree is to use the Euclidean
distance as the key value for high dimensional points. Thus resultant values obtained from dimension
reduction can be well organized and later looked for results in one dimensional arrangement. Since B+ Tree
uses Euclidean norm to cluster and sort the data points, it is the most efficient indexing technique which
supports one dimensional structure and it is implemented by all the business a database. The mapping

R1 (where RD is Relational Data and R1 is Relation function among the
data) and ensures that the data points with near Euclidean values will be near in the plot. Hence, when
processing a query and data, the system searches for the points (nodes) whose norm value is nearer to the
norm of query point. In addition, in B+ Tree the leaves are connected as a linked list. Thus traversing elements
in a B+-Tree is less time consuming operation.

Creating an NB-Tree

The creations of NB- Tree initially assume that the data space is standardized to the [0::1], a unit
hypercube, and a random data point in the space is described as:

 ||P|| = √PO

2
+ P

2
1+..........+P

2
D-1

where P is the Pointer of space and D is Data point of data set or base.

Figure 2: Dimension Reduction of node (p,d).

 The norm is used as key when adding high dimensional data points in to a B+-Tree. After adding all

the points, a set of one dimensional data sorted by norm value is obtained. Figure 2 illustrates a dimensional
reduction for two-dimensional data points. Because this mapping function includes various points with the
similar key value. Alternatively, it is said that neighbor data points have similar norms (keys).

Therefore, in a first step, two-dimensional points are charted to a one-dimensional line by calculating

their Euclidean Norm. In a second step, to order these mapped data points through B+- Tree where all the
consequent operations are performed. So the NB-Tree can be applied on current database without extra
complication. Thus grid storage servers are well indexed utilizing the proposed method.

Searching

The process of searching in the NB-Tree initiates by calculating the query point norm. Now one
Dimensional B+-tree can be searched against query points. The search procedures are based on the query
type. Present indexing methods support three types of queries as follows: 1).Point Query. 2) Range Query. 3)
k-NN Query (Here K-NN stand for k nearest neighbor). [28] [32].

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1496

 This work uses Point Query since the administrator and user requires exactly matched records from
the database. Range Query and k-NN Query are used in content-based retrieval.

1.leaf = searchB+Tree(dist(q))
2. Do
3. leaf = leaf.PreviousSearchToTheRight
4. upperLimit = upperLimit + delta
5. While(leaf.key <= upperLimit)
6. If(dist(leaf.point, q) < list.LastElement Or list.size < k)
7. list.Insert(leaf.point)
8. End If
9. leaf = leaf.right
10. End While
11. leaf = leaf.PreviousSearchToTheLeft
12. lowerLimit = lowerLimit + delta
13. While(leaf.key >= lowerLimit)
14. If(dist(leaf.point, q) < list.LastElement Or list.size < k)
15. list.Insert(leaf.point)
16. End If
17. leaf = leaf.left
18. End While
19. While(dist(list.LastElement(), q) > radius)
20. kNN = list[0, k-1]

Algorithm 1: Point Query (q,tq)

PARALLEL JOB SCHEDULING AND DATA RETRIEVAL

 Whenever the data are replicated, the copies of these data files are stored at various locations in the
Data grid. The major theme is the efficient and quick access, which can be achieved by providing the data close
to the user. A replication algorithm should have the solution for these questions, (1) which data files should be
replicated; (2) where the replicas should be located in the system. (3) When and how many replicas should be
produced.

 When a user queries for files, all the servers should be searched parallel for getting fast response. Hence
we purpose a novel Parallel Job Scheduling (PJS) that considers file locations, network characteristics, number
of jobs waiting in queue, and disk read speed of storage drive at data sources. The central grid computing
server takes the responsibility of implementing Parallel Job Scheduling strategy.

Parallel Job Scheduling (PJS)

 For effective scheduling of jobs, the algorithm decides the suitable region, LAN and location
correspondingly. The PJS reduce the effort of the user in probing for the suitable site by using the hierarchical
tree to schedule a job.

Let Jj = { f1 , f2, . . . , fm} be the m number of files required files for a job j. For a Grid site Sj, based on
the availability of fi in Sj, the replicas are classified into four subsets as follows.

• The first subset represents On-site set R

j
S in which every locally accessible replicas are present.

• The second subset is LAN-site set R
 j

LAN in which the remaining replicas that can be seen in the local LAN are
present.
• The third subset is Region-site set R

j
R in which the other replicas that should be contacted from local region

are present.
• The fourth subset is Other-Region-site set R

j
OR in which the other replicas that should be contacted from

other region are present.

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1497

 Assume that for each fi in R
j
OR, the bandwidth of Sj resides in Bij. Now the time required to get fi to Sj

from |fi |/Bji , Here |fi | represents the replica size. Some cost terms are defined in following.

Inter-Region-Communication-Cost (InterRccj x): If job is distributed to region x , then; the inter-
communications value are often computed by victimization the subsequent equation

InterRcc : if jx, i=1..m(InterRcc
j
x) (1)

Inter-LAN-Communication-Cost (InterLcc

j
 x): If a job is sent to LAN x , then the inter-communications cost can

be computed by using the factor LAN-to-LAN bandwidth

InterLcc : if jx, i=1..m(InterLcc
j
x) (2)

Figure 3: An example of hierarchical grid environment

The PJS consider the hierarchical Grid structure. Figure 3 is a simple example. The time required to

retrieve a file from another site is drawn over each edge. A sample grid job needs six files (F1, F2, F3, F4, F5,
F6) which are distributed in four different regions.

If a job is scheduled to the region on basis of highest hit percentage of required replicas like Region or

node B, then the number of inter-region- communications and the execution time of the job would be reduced
since the data can be accessed faster. It’s possible that the number of replicas in one region can be greater
than other but the total amount of replicas would be smaller. The job can’t be scheduled based on the number
of replicas. Moreover, hunting for the best site from a large amount of distributed resources may direct to
extensive latency.

The PJS consists of three steps decision process. In first step, a best region for minimizing the inter-

region communication cost is selected. For example in Region B, it has to retrieve File3 and File4. The Region C
can be the best location for File3 and File4 which has minimum InterRCC

j
RegionB = 8 s. This indicates that the

region with maximum number of matches of necessary replicas would not be the good solution. In second
step, the best LAN among all the available LANs is selected to reduce the Inter-LAN-Communication-Cost
(InterLCC

j
x). LANa is selected in previous example. [36]

Once the appropriate LAN is chosen, the third step is to choose the top site Sj from chosen LAN (in

example LANa) on basis of two main parameters: queue length and estimated file transfer time. The overall
completion time of the Data Grid jobs can be reduced by reducing file transfer time because the Data grid jobs

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1498

require high file transfer time. The completion time can also be affected by the Queue length, i.e. the number
of uncompleted jobs in the queue[38]. Using a parallel strategy the best site can be selected. The proposed
parallel strategy is described in the following process. Some matrices in the scheduling are algorithm explained
first: Let Bji is the available bandwidth at the time from site Sj to the location that fi exists in. PropagationDelayij
is network/ propagation latency /delay (in seconds) from location Sj to Si . DiskSpeed i represents the data
transfer rate of storage devices of systems in site i.. Then transfer time for file fi (TransferTimef i) is calculated
by

if (Bji < DiskSpeedi)

TransferTimefi=PropagationDelayij+ (|fi| ∗ 8)/Bji (3)

Else

TransferTimefi = PropagationDelayij + |fi |/DiskSpeedi

 Let Jx = {f1,f2, . . . , fm} be the m number of required files for job x. Now estimated file data transfer
time of job x when scheduled on location Sj (JobTimex,j) is given by

JobTimex,j= i=1
m

 Min(TransferTimei) (4)

 When a number of sites store the replica of fi, then the one with minimum TransferTime is selected.

Let k denotes the number of jobs waiting in queue of location Sj. The TotalTimej for location Sj is computed by

TotalTimej= x=1
k
 JobTimex,j (5)

At the end of job scheduling, the servers which contain the files required by the users are located and

the connection is established. Now we have to search the database of the located server to get the required
file data.

 Input : Ji,…. Jn represents n number of jobs and {R}, {L} denotes the set of regions and LANs respectively.
1. Find the availability of Ji at given {R}
2. if available then
3. calculate InterRcc

j
x of job j for all the regions in {R}

4. calculate InterLcc
j
x of job j for all the LANs in {L}

5. step 1: choose a region which has minimum InterRcc
j
x

6. step 2: choose a LAN which has minimum InterLcc
j
x

7. step 3: calculate QL and TransferTimefi for each site Sj in chosen LAN
8. SELECT site with minimum TransferTimefi

9. return file
10. repeat for all jobs
11.else
12.end

Algorithm 2: Parallel Job Scheduling

Searching NB-Tree

The resultant value obtained at the end of computing the query point Euclidean norm, is used as key
to look the B+-Tree. The distance to the query point is computed for the point(s) returned by the B+-Tree (if
any). If the resultant distance is zero, it denotes that the query point presents in the NB-Tree. The located
server then sends the data to central grid server for further processing.

EXPERIMENTAL RESULTS AND DISCUSSION

 In this section the experimental evaluation performed is described and performance of the proposed
system is analyzed. All experiments were performed on a PC Pentium Dual Core @ 2.30GHz running Windows

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1499

XP with 384 MB of RAM and 15GB of disk. The proposed system is implemented using CoreJava, Globus Toolkit
4 and GridSim package.

The following snapshots show the major processes of proposed system such as secure grid storage,
task scheduling and data retrieval. Figure 4 shows the information about grid infrastructure and input data.
After getting the input data the submit button will be pressed which takes to the grid information system and
to central grid server. Figure 5 shows the encryption process at central grid server. Figure 6 depicts the grid
scheduling process where the grid scheduler allocates the task to different nodes parallel.

Figure 4: Grid application with selected sample data.

Figure 5: Parallel Task Scheduling

The output and benefits of the proposed system are examined in following. Number of

Intercommunications and Computing Resource Usage are the considered parameters in this work.

Table 1: Computer node details

Nodes (32) CPU Memory

10 Intel Pentium 4
@2.2Ghz

512mb

15 Core Duo @ 2.8
Ghz

2gb

7 Quad core @ 3 Ghz 2gb

Table 2: Resource Usage Table

Resources Workload
(tasks/minute)

CPU Usage
(%)

Job
Time

(mins)

Method

12 365 75 30 Serial

28 1000 80 13.3 Static PS

32 2000 88 3.5 PJS(dynamic)

mailto:4@2.2Ghz
mailto:4@2.2Ghz

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1500

 Table 1 and 2 shows the resource usage of grid servers simulated in the experiment. The CPU usage
gets increased when the workload of grid environment is increased. It is observed that time required to
complete the job depends on number of resources and CPU usage of grid servers.

Figure 6. Computing resource usage for various job scheduling and replication algorithms

The Figure 7 shows the computing resource usage. It represents the percentage of time in which

Computing Elements are in live state. The PJS completes all jobs efficiently via proper computing resource
usage thus CPUs would not be idle for longer time.

CONCLUSION

 A grid computing environment that utilizes benefits of the Internet to give storage capability for the

enormous data has become as an important research topic. To improve the overall performance of the grid
environment, the job scheduling policy and indexed databases are very important factors because of the
storage capacity of each Grid System is limited. Thus, this paper is proposed a CGC framework to store and
maintains biomedical information, unique ID details of citizens in the grid environment. The central grid
system proposed in this work play a major role as it receives tasks from administrators and users. To store and
retrieve data from grid, this work proposed an efficient Parallel Job Scheduling (PJS) and NB Tree database
indexing technique. The PJS uses the hierarchical scheduling to decrease the searching time for a suitable
computing resource. From the experimental results it is found that the NB-Tree support point queries more. By
using SIDEA, the data flow between central grid server and storage servers can be effectively protected. The
proposed secure algorithm has two key points: improved degree of diffusion and increased key size.

 The experimental results show that our proposed system achieves good performance in parallel job
scheduling and searching the required data in grid servers. But due to the network bandwidth constraints and
latency over the Internet, the true mathematical calculation over the Grid is still the limitations to this work.
Future research direction involves in finding a task-level/coarse-grained distributed parallel programming
interface for grid environment.

REFERENCES

[1] Ajay Kumar And Seema Bawa, Cornell University Lib,Jul, 2012.
[2] Menglan Hu And Bharadwaj Veeravalli, Ieee, October 2013
[3] Http://Www.Gridcafe.Org/What-Is-The-Grid.Html
[4] Foster, I, Kesselman, C, Nick, J.M., and Tuecke, S., Dec 2010.
[5] Diuf. H , May 18, 2009.
[6] C. Anglano, M. Canonico, Feb. 2005, 3470.
[7] Rosetta@Home, http://boinc.bakerlab.org/rosetta/, 2012.
[8] Einstein@Home, http://einstein.phys.uwm.edu/, 2012.
[9] D.P. Anderson and K. Reed, Int’l Conf. System Sciences, 2009.

ISSN: 0975-8585

May – June 2015 RJPBCS 6(3) Page No. 1501

[10] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Addison Wesley, 2003.
[11] O.H. Ibarra and C.E. Kim, J. ACM, ,2007, vol. 24, no. 2, pp. 280-289.
[12] M. Maheswaran et al, 1999, pp. 30 44.
[13] H. Casanova, et al , May 2010, pp. 349-363.
[14] E. Santos-Neto et al , 2009, pp. 210-232.
[15] N. Fujimoto and K. Hagihara, 2008, pp. 391-398.
[16] W. Cirne, F. Brasileiro, D. Paranhos, L.F.W. Ges, andW. Voorsluys, J.Parallel Computing, Apr. 2006vol.

33, no. 3, pp. 213-234.
[17] Y.C. Lee and A.Y. Zomaya, IEEE Trans. Computers, June 2007vol. 56, no. 6, pp. 815-825,
[18] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski, Int’l Conf. Grid Computing, 2007.
[19] A. Legrand and C. Touati, Proc. IEEE INFOCOM, 2007.
[20] C. Anglano and M. Canonico, Proc. IEEE Int’l Symp. Parallel and Distributed Processing (IPDPS), 2008.
[21] A. Iosup, et al, (HPDC ’08), 2008.
[22] O. Beaumont et al , Apr. 2008, vol. 19, no. 5, pp. 698-709.
[23] R. Bertin, A. Legrand, and C. Touati, 2008, pp. 118-125.
[24] A. Benoit et al , Feb. 2010, vol. 59, no. 2, pp. 202-217.
[25] http://www.egi.eu/
[26] http://www.eu-emi.eu/
[27] http://www.worldcommunitygrid.org/
[28] Erik Gast, Ard Oerlemans, Michael S. Lew, IJMIR, vol. 2, no. 4, 2013.
[29] Karol Estrada et al, Bioinformatics. Oct 15, 2009; 25(20): 2750–2752.
[30] K.Ashokkumar et al, Journal of Engineering Science and Technology Review 7 (4) (2014) 109- 113.
[31] Ming-Chi Tsai et al, 2007: 746–750.
[32] J.A. Jorge, (DASFAA 2003) Proceedings dasfaa-03, 2003.
[33] K.Ashokkumar, Dr.C.Chandrasekar, ICMS2014 Elsvier conference proceedings ,2014.
[34] K.Ashokkumar, Dr.C.Chandrasekar, proceedings of the National conference on man-machine

interaction 2014.
[35] K.Ashok kumar, C.Chandra sekar,

Proceedings of the INCOCCI- IEEE conference, 2010.

[36] Chang, R.S., Volume 23, Issue 7, August 2007, Pages 846–860
[37] Hu, Mengalan et al, IEEE Transactions on Computers, 2012.
[38] Sepahvand et al, Journal of Applied Sciences Reearch, 2011.
[39] Hsu, C.H, Future Generation Computer Systems, 2007 .05
[40] Dongbo Liu and Peng Xiao, Journal of Software (1796217X), 2013.
[41] Massimo Canonico, (WETICE 2007), 06/2007
[42] Dusit Niyato, IEEE/ACM International Symposium on Cluster Computing and the Grid, 05/2009
[43] www.creatis.insa-lyon.fr
[44] Andreas D. Baxevanis, ISBN 0-471-38390-2 (Cloth), ISBN 0-471-383910.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsai%20MC%5Bauth%5D

