

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Antibacterial Activity of Coumarine Derivatives Synthesized from 4-Chloro-chromen-2-one. The Comparison with Standard Drug

Aziz Behrami¹, Islam Krasniqi²

¹ The Geoscience and Technology Faculty - Mitrovica , University of Pristine ,Kosova ² Department of Chemistry, University of Pristine , Kosova

ABSTRACT

In present paper, we report the organic syntheses of four compounds from 4-Chloro-chromen-2-one and describe the results of antibacterial activity of purified compounds. Compounds 4-Butylamino-chromen-2-one (1a) , 4-Butylamino-2-oxo-2H-chromene-3-sulfonyl chloride (2a) , 4-Butylamino-2-oxo-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide (3a), 4-Butylamino-5-ethyl-2-oxo-7-(N'-phenyl-hydrazino)-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide (4a) , have been synthesized and characterized using melting points , IR spectra , ¹H-NMR and ¹³C-NMR spectra. The antibacterial activity of synthesized compounds and streptomycin at concentrations of 1mg/ml, 3mg/ml and 5mg/ml , have been evaluated against three strains of bacterial culture; Staphylococcus aureus, E.coli and Klebsiella. The compounds show bacteriostatic and bactericidal activity.

Keywords: 4-Chloro-chromen-2-one , coumarine derivatives , antibacterial activity , Staphylococcus aureus, E.coli , Klebsiella, streptomycin.

*Corresponding author

INTRODUCTION

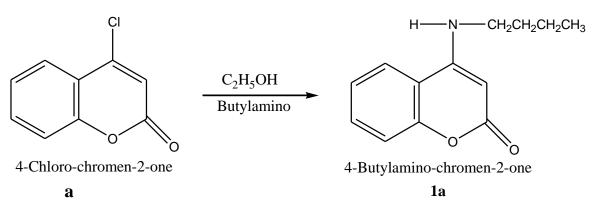
Starting from **4-Chloro-chromen-2-one (a)**; derivatives (1a, 2a, 3a, 4a) are synthesized. Coumarin derivatives are large group of heterocyclic with oxygen as heteroatom. Coumarin is a chemical compound (specifically, a benzo- α -pyrone) found in many plants notably in high concentration in the tonka bean (Dipteryx odorata), vanilla grass (Anthoxanthum odoratum) , woodruff (Galium odoratum) , mullein (Verbascum spp), and sweet grass (Hierochloe odorata).Coumarine and their derivatives have shown varius biological activities. Their fame has come mainly from their antithrombic, anti-inflammatory, vasodilator , and antiviral activities. Other several coumarin derivatives have antimicrobial properties, have urged us to synthesize some new coumarin derivatives and to investigate their antibacterial activity against *Staphylococcus aureus, E.coli* and *Klebsiella*. The antibacterial activity of synthesized compounds is compared with antibacterial activity of streptomycin [1-14].

MATERIALS AND METHODS

Experimental Chemistry

Compounds 4-Butylamino-chromen-2-one **(1a)**, 4-Butylamino-2-oxo-2H-chromene-3-sulfonyl chloride **(2a)**, 4-Butylamino-2-oxo-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide **(3a)**, 4-Butylamino-5-ethyl-2-oxo-7-(N'-phenyl-hydrazino)-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide **(4a)**, are synthesized.

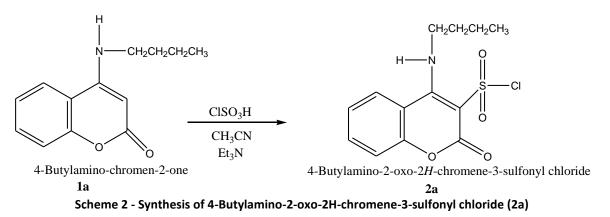
The identification of 2H-chromen-2-one derivatives (1a,2a,3a,4a), is made by using melting point, infrared, ¹H NMR, ¹³C NMR spectra and elemental analysis. Melting point was determinate on a Electro thermal apparatus (Fisher Scientific 2555) in a open capillary tube and are uncorrected. Infrared spectra were recorded in cm⁻¹ for KBr pellets on a FT-IR Shimadzu 8400S spectrophotometer with resolution 4 cm⁻¹. ¹H NMR spectra were recorded on a Bruker UNITY plus-500 'NMR 1' spectrometer using DMSO-d₆ as the solvent and TMS as the internal references standard (σ = 0,00 ppm).Chemical shifts are expressed in δ ppm. Mass spectra were taken on a LKB 9000 mass spectrometer.


Element analyze was performed on a Perikin-Elmer 240 BCHN analyzer. The purity of the compounds (synthesized) was routinely checked by TLC using Merck Kieselgel-60 (F-254) and benzene,toluene,glacial acetic acid (80:10:10)as mobile phase. The spots were exposed in iodine vapour for visualization.

Synthesis of 4-Butylamino-chromen-2-one (1a)

For this synthesis is used as substrate 4-Chloro-chromen-2-one in a 100 ml flask mixed 3 g of 4-Chloro-chromen-2-one with 8ml C₂H₅OH, equivalent amount Butylamino. The mixture was refluxed at 250 °C for ca. 90 min. The obtained crystals brown are filtered and rinsed with ethanol and dried at room temperature. Recrystallization form absolute ethanol gave a red product of 80% yield, melting point 117° C.

ISSN: 0975-8585

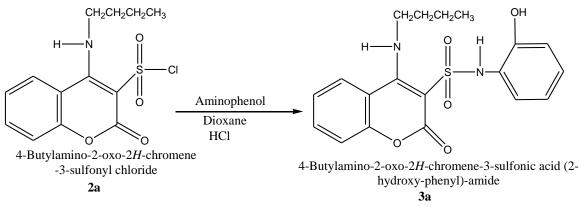


Scheme 1 - Synthesis of Compounds 4-Butylamino-chromen-2-one (1a)

Synthesis of 4-Butylamino-2-oxo-2H-chromene-3-sulfonyl chloride (2a)

In a 100 ml flask were mixed 2.5g of $\,$ 4-Butylamino-chromen-2-one, with 5ml CH_3CN , 1ml ClSO_3H , 0.3 ml Et_3N .

The mixture was refluxed at 80 $^{\circ}C~$ for ca. 1.5 h . The obtained brown crystals are filtered and dried at room temperature . Recrystallization form C_2H_5OH gave brown crystals product of 70% yield, meltingpoint, 287 $^{\circ}C$. (Scheme 2) .



Synthesis of 4-Butylamino-2-oxo-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl) -amide (3a)

In a 100 ml flask were mixed 1.5g 4- Butylamino – 2 – oxo - 2H- chromene - 3- sulfonyl chloride with 4 ml Dioxane and 1g aminophenol , 0.2 ml HCl , 0,2 ml Et₃N as katalyzer. The mixture was refluxed at 92 °C in water bath for ca. 2 h .The flask was placed in an ice bath for 1h until yellow crystalline precipitate was formed.

After filtration the product was recrystallized from ethanol .The recrystallization from ethanol gave a yellow product at 70% yield, melting point; 180°C. (Scheme 3).

Scheme 3 - Synthesis of 4-Butylamino-2-oxo-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl) -amide (3a)

Synthesis of 4 – Butylamino – 5 – ethyl -2 – oxo -7 - (N' – phenyl – hydrazine) - 2H-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide (4a)

In a 100 ml flask were mixed 1g of 4-Butylamino-2-oxo-2H-chromene-3-sulfonic acid (2-hydroxy-phenyl) – amide , 0.8g phenylhidrazine with 4ml C₂H₅OH ,0.5ml ClCH₂CH₃, 0.2 ml Et₃N and 0.2 ml HCl. The mixture was refluxed at 95 °C in water bath for ca. 2 h .The obtained red crystals are filtered and rinsed with CH₃CN and dried at room temperature. Recrystallization from ethanol gave a red product at 60 % yield , melting point 204 °C. (Scheme 4)

Antibacterial activity

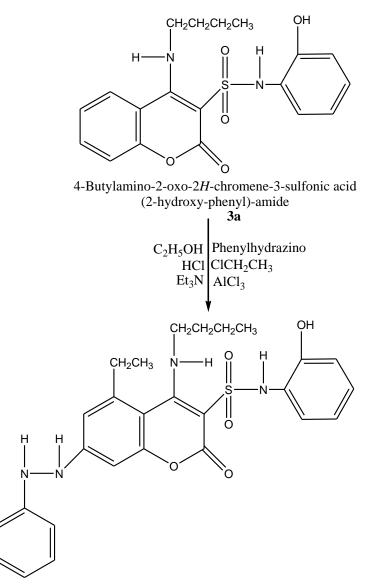
The purified synthesized compounds (1a,2a,3a,4a) was subjected to test in vitro its antibacterial activity against three bacterial cultures ; *Staphylococcus aureus, E.Coli* and Klebsiella. Antibacterial activity of compounds was investigated applying the Kirby-Bayer method ¹⁴ or disc method (d=5.5 mm max. capacity 10 μ g)

(mm)						
Compound	2mg/ml	3mg /ml	5mg/ml			
1a	10	13	15			
2a	18	20	24			
3a	19	21	25			
4a	11	13	18			
Streptomycin	20	20	20 10 μg			

Table 1 Antibacterial activity- Staphylococcus aureus and the comparison with Streptomycin Inhibition zone

Compound	2mg/ml	3mg /ml	5mg/ml		
1a	5	9	14		
2a	10	15	21		
3a	12	17	23		
4a	11	15	20		
Streptomycine	23	23	23	10 µg	

July - September 2012


RJPBCS

Volume 3 Issue 3

Table 3 Antibacterial activity – Klebsiella and the comparison with Streptomycin Inhibition zone (mm)

Compound	2mg/ml	3mg /ml	5mg/ml
1a	12	19	23
2a	13	18	25
3a	13	19	24
4a	10	17	21
Streptomycine	23	23	23 10 μg

4-Butylamino-5-ethyl-2-oxo-7-(*N*'-phenyl-hydrazino)-2*H*-chromene-3-sulfonic acid (2-hydroxy-phenyl)-amide

4a Scheme 4- Synthesis of 4 – Butylamino – 5 – ethyl -2 – oxo -7 - (N' – phenyl – hydrazine)- 2H-chromene-3sulfonic acid (2-hydroxy-phenyl)-amide (4a)

July – September 2012 RJPBCS Volume 3 Issue 3 Page No. 373

Table 4

Compound	IR (cm ⁻¹)	¹ H NMR ppm	¹³ C NMR ppm		
1a	3370 (NH), 3010(С-Н) ar,	δ .0.96 s(3H,CH ₃)	δ . 166(C-NH),162(C,COO),		
	2962(C-H)aliphatic	1.33 d(,4H,2CH ₂)	150(C-O),121-128(5C,ar)		
	1720(C=O),1570(C=C)ar,	1.55-2.0 d(,H,NH-CH ₂)	88.9(C=C-H),46.3(C-NH)		
	1385(C-O),750(C-H)ar	2.65 s(,H,NH),	34.8(C,CH ₂),20.6(C,CH ₂)		
		7.20-7.60m(,5H,ar)	13.7(C,CH ₃)		
2a	3370(N-H),3008(C-H)ar	δ .0.96 s(,3H,CH ₃)	δ .167(C-NH),162(COO),		
	2960(CH)alifatic,	1.33-1.55,d(4H,2CH ₂)	150.8(C-O),121-128(6C,ar)		
	1740(C=O),1600(C=C)	2.65 s(H,NHCH ₂)	89(C-SO ₂),46.3(C-NH)		
	1380(SO ₂ Cl),1285(C-O)	3.0 s(H,NH)ar	34.8(C,CH ₂),20.6(C,CH ₂)		
	720(C-H)ar	7.20-7.63m(4H,ar)	13.7(C,CH ₃)		
3a	3400(OH),3300(NH),	δ . 0.96s(3H,CH ₃)	δ .167(C-NH),162(COO),		
	3265(SO₂NH),3009	1.33-1.55d(4H,2CH ₂)	150(C-O),144(C-O),		
	(C-H)ar, 2850 (C-H)al,	2.65s(H,NHCH ₂)	134(C-NH),116-127(9C,ar)		
	1730(C=O),1528(C=C) ar,	3.0s(H,NH),	46.2(C-NH)20.6(C,CH ₂)		
	1280(N-H),1275(C-O),	4.0s(H,NHSO ₂)	13.7(C,CH ₃)		
	1250(C-O),740(C-H)ar	5.0s(H,OH)			
		6.29-6.63m(8H,ar)			
4a	3387(O-H),3330(N-H)	δ. 0.96-1.24d(6H,2CH ₃)	δ . 167(C-NH),162(COO),		
	3270(SO ₂ NH),3010(C-H)ar	1.33-1.55d(4H,2CH ₂)	151(C-O),144(C-O),		
	2900(C-H)al ,1728(C=O)	2.0s(H,NH),2.65s(H,NH)	142(C-NH),		
	1600(C=C)ar,1280(N-H)	2.59s(H,CH ₂),4.0t(H,NH)	102-138(17C,ar),89(C-SO ₂)		
	1270(C-O),750(C-H)ar	5.0s(H,OH)	46.3(C-NH),22.5(C,CH ₂)		
		6.29-7.18m(11H,ar)	13.7(C,CH ₃),10.5(C,CH ₃)		

Table-5 Analytical data

Compd	Yield	m.p	M.F	Elemental analysis. Calculated (found) (%)				d) (%)	
	(%)			С	н	Ν	0	Cl	S
1a	80	117°C	$C_{13}H_{15}NO_2$	71.87	6.96	6.45	14.73		
				72.00	7.11	6.15	14.32		
2a	70	287°C	$C_{13}H_{14}CINO_4S$	49.45	4.47	4.44	20.27	11.23	10.15
				50.00	5.00	4.11	20.00	11.00	9.80
3a	70	180°C	$C_{19}H_{20}N_2O_5S$	58.75	5.19	7.21	20.59		8.20
				60.00	4.90	7.10	19.92		8.00
4a	60	204°C	$C_{27}H_{30}N_4O_5S$	62.05	5.79	10.72	15.31		6.14
				61.50	5.20	10.0	15.00		6.00

CONCLUSION

From the results the following conclusion was drawn: The study provides the first evidence that compounds **(1a, 2a, 3a, 4a)** obviously inhibit the growth of *Staphylococcus auerus*, *E.coli* and *Klebsiella*.

The compounds (1a, 2a, 3a, 4a) compared with the antibacterial activity of *Streptomycin* in *S.aureus*, and *Klebsiella*.

ISSN: 0975-8585

The chemical structures of synthesize compounds were determined according to extensive NMR experiments and published data.

ACKNOWLEDGEMENTS

The authors thank Prof.Branko Stanovnik, University of Ljubljana and its laboratory staff for ¹H NMR spectrum and elemental analyses.

REFEREFNCES

- [1] S Govori, V Kalaj, V Rapic, L Kalaj and S Dakovic. Heterocycel Commun 2002; 8: 29.
- [2] B Stanovnik, H Susachitzky and EF Scriven. Progress in Heterocyclic Chemistry, Pergamon Press, Oxford, 1993; Vol 5, pp 75-146 (1993).
- [3] SH Lee, DS Shin, JS Kim, KB Oh and SS Kan. Arch Pharm Res 2003; 26.
- [4] KB Vyas, KS Nimavat, GR Jani and MV Hathi. Orbital 2009; 1: 183.
- [5] AZ Abyshev, VA Gimdein, EV Semenov, EM Agev, AA Abdulla Zade and AB Gueseinov, Pharm Chem J 2006; 40: 607.
- [6] A Behrami, K Vaso, I Krasniqi. J Int Environ Appl Sci 2010; 5: 247 (2010).
- [7] MD Aytemir, RC Hider, DD Erol, M Ozalp and M Ekizoglu. Turk J Chem 2003; 27: 445.
- [8] MM El Saghier, MB Naili, B Kh Rammash, NA Saleh and KM Kreddan. Arkivoc 2007; 83.
- [9] ZM Nofal, MEI-Zahar and S Abd El Karim. Molecules 2000; 5: 99.
- [10] Chaluvaraju KC and Ishwarbhat K. Asian J Chem 2008; 20: 4335.
- [11] Rajan Ra Kali, Jubie S, Grworamma B, and Suresh B. Asian J Chem 2008: 20: 5289.
- [12] Ali Mohammed Ashraf and Sharayar Mohammed. Boorg Med Chem. Let 2009; 17: 3314.
- [13] Nofal ZM, El-Zahra M, Abd El-Karim S. Molecules 2000; 5: 99-113.
- [14] Vyas KB, Nimavat KS, Jani GR, Hathi MV. Orbital 2009; 1: 183-192.