

# Research Journal of Pharmaceutical, Biological and Chemical Sciences

# Antioxidant Activities of Some Thai and Exotic Fruits Cultivated in Thailand.

# Penpun Wetwitayaklung<sup>1\*</sup>, Juree Charoenteeraboon<sup>2</sup>, Chutima Limmatvapirat<sup>3</sup>, and Thawatchai Phaechamud<sup>4</sup>

<sup>1</sup> Dept. of Pharmacognosy, Faculty of Pharmacy, Silpakorn University, Nakhon-Pathom, Thailand 73000
<sup>2</sup> Dept. of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon-Pathom, Thailand 73000
<sup>3</sup> Dept. of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Nakhon-Pathom, Thailand 73000
<sup>4</sup> Dept. of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon-Pathom, Thailand 73000

# ABSTRACT

The twenty-one methanolic extracts of meat or peel of native and exotic fruits cultivated in Thailand were determined their total phenolic content and antioxidant activities by Folin-Ciocalteu reagent and Trolox equivalent antioxidant capacity (TEAC) assay. The ripe fruit of *Carissa carandas* and the raw fruit of *Ficus hirta* presented the highest and lowest %yield of extract as 67.20% and 12.86%, respectively. The *Terminalia chebula* and *Baccauea motleyana* extracts contained the highest and lowest amount of total phenols, 6.96 and 0.05 g/100g dried fruit, respectively. The *T. chebula* and *Syzygium malaccense* extracts contained the highest and lowest amount of total phenols, 16.12 and 0.22 g/100g extract, respectively. The range of TEAC and IC<sub>50</sub> values of the fruit extracts were 0.35–0.003 and 21.33 µg/mL –5.10 mg/mL, respectively. The *T. chebula* and *Dispyros peregrina* extracts showed the highest antioxidant activities, while *B. motleyana* extracts indicated the lowest. The extracts of *T. Chebula* and *D. peregrina* (raw fruit) showed equal TEAC value, however the total phenolics content of *D. peregrina* raw fruit was quite low. Finally almost methanolic extracts of Thai and exotic fruits in this study presented their antioxidant activities in direct proportion to the amount of total phenolics. **Keywords**: fruits, total phenolics, antioxidant activity, TEAC



\*Corresponding author Email: penpun@su.ac.th

January – March 2012

RJPBCS

Volume 3 Issue 1

Page No. 12



#### INTRODUCTION

Thailand has a lot of kinds of fruits that are different in shape, size, taste, smell and texture. Some of them are exotic fruits that have been cultivated in Thai territory for a long time. Most of the fruits are sweet and delicious and some are sour and astringent taste. They are sources of carbohydrate, vitamins, minerals and fiber. In Thailand, fruits are not only giving high nutritional values but the fruits and other parts of their trees also beneficial as traditional medicines as shown in Table 1 [1-6]. These pharmacological activities were interesting. Therefore several researchers have been investigated and reported useful scientific information about their activities as follow. The Annona muricata shows cytotoxic [7], antileishmanial [8], and molluscicides activities [9]. The Averrhoa carambola L indicates hypotensive [10], muscle relaxant [11], and HIV-1 reverse transcriptase inhibitors acitivies [12]. The Baccaurea sapida presents hypotensive activity [13]. The Carissa carandas Linn is mentioned histamine releasing [14] and cadiotonic activities [15]. The *Coccinia grandis* indicates hypoglycaemic [16], antiHIV-1 [17] and increasing movement of intestine acitivities [18]. The Dillenia indica is reported anticonvulsion, antidiabetes [19], antibacterial and antiviral activities [20]. The Diospyros peregring has spermicidal [21], antiameobic, antiviral and hypoglyceamic activities [22]. The Ficus hirta presents cytotoxic and antiviral activities [23]. The Ficus racemosa has been reported on hypoglyceamic [24], hypotension [25], cytotoxic [26], antiviral [27], antibacterial [28], antipyretic and anti-inflammatory activities. The Garcinia schomburgkiana has anti-tumor promoting activity [29]. The Lansium domesticum indicates antimalarial [30-31], larvicidal [32], and insecticidal acitivies [33]. The Mimusops elengi shows diuretic [34], antiviral [35], antifungal [36] and spermicidal [37] activities. The Terminalia chebula has been reported on its antibacterial [38], antiviral [39], and antioxidant activities [40-41]. However there has no report about total phenolic contents and antioxidant activities of these fruits. The aim of this study is to determine the phenolic contents and antioxidant activities of these fruits.

| Scientific name                        | Common name                   | Family                       | Used for                                                                                                                                                                                    |
|----------------------------------------|-------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Angle Marmelos                         | Bael, Bengal<br>Quince, Bilak | Rutaceae                     | Antipyretic form malaria, flatulence (bark, root bark),<br>influenza, bronchitis (watery from fresh leaf),<br>drinking juice for tonic (slide of grill raw fruit),<br>laxative (ripe fruit) |
| Annona muricata L.                     | Soursop                       | Annonaceae                   | Scurvy (ripe fruit), antiameobic (seed of raw fruit),<br>vomit stimulant & haemostatic (seed), pesticide and<br>poison to fish (seed)                                                       |
| Ardisia elliptica Thunb.<br>S/ST       | shoebutton                    | Myrisnaceae                  | Treat gonorrhoea (root)                                                                                                                                                                     |
| Averrhoa carambola L.                  | Corambola,<br>Star Fruit      | Averrhoaceae,<br>Oxalidaceae | Antipyretic (root, leaf), diarrheoa & antiameobic<br>(stem bark), scurvy & laxative (fruit), Anthelmintic<br>(flower)                                                                       |
| Baccaurea motleyana                    | Lamai                         | Euphorbiacea<br>e            | Fruit can ate                                                                                                                                                                               |
| <i>Baccaurea sapida</i><br>Muell. Arg. | Lotka                         | Euphorbiacea<br>e            | Vitamin C supplement, anti-thirst (fruit), antipyretic<br>(all part), antidiarrheoa, anti-TB (root), anthelmintic<br>& antifungal (leaf),                                                   |

January – March



| <i>Carissa carandas</i> Linn  | Karanda,          | Apocynaceae   | Anthelmintic & appetite stimulant (root), diarrhoea &     |  |  |  |  |
|-------------------------------|-------------------|---------------|-----------------------------------------------------------|--|--|--|--|
|                               | Carunda, Christ's |               | antipyretic & ear ach & sore throat (leaf),               |  |  |  |  |
|                               | Thorn             |               | tonic(heartwood), scurvy & diarrhea (raw& ripe fruit)     |  |  |  |  |
| <i>Coccinia grandis</i> Voigt | Ivy gourd         | Cucurbitaceae | Vitamin A supplement (leaf), antipyretic & anti-          |  |  |  |  |
|                               |                   |               | diabetic (leaf, root), expectorant(leaf), anti-iching     |  |  |  |  |
|                               |                   |               | (leaf, flower), antivomitic (root), laxative (root bark), |  |  |  |  |
| Dillenia indica L.            | Matat, chulta     | Dilleniaceae  | Mouth & throat astringent (leaf, bark), eat fruit, de     |  |  |  |  |
|                               |                   |               | poisoning(root)                                           |  |  |  |  |
| Diospyros peregrina           | River ebony       | Ebenaceae     | Astringent & antipyretic & anti-amoebic (stem bark,       |  |  |  |  |
| Guerke                        |                   |               | raw fruit), heal lesions of oral mucosa, (bark, ripe      |  |  |  |  |
|                               |                   |               | fruit) antidiarrhoea (bark, raw fruit, seed)              |  |  |  |  |
| Ficus hirta Vahl.             | Hairy mountain    | Moraceae      | Antiiarrhoea, liver-, lung- and cardiotonic (bark),       |  |  |  |  |
|                               | fig               |               |                                                           |  |  |  |  |
| Ficus racemosa L.             | Cluster fig,      | Moraceae      | Antidiarrhoea & anti-vomiting & wound healing             |  |  |  |  |
|                               | Country fig tree  |               | (bark), antipyretic (root), flatulence (fruit)            |  |  |  |  |
| Garcinia duleis Kurz          | Mapood            | Guttiferae    | Expectorant, anticough, sore throat (fruit juice);        |  |  |  |  |
|                               |                   |               | astringent (bark); antipyretic (root)                     |  |  |  |  |
| Garcinia                      | Madan             | Clusiaceae,   | Constipation, anti-cough, abnormal uterine bleeding       |  |  |  |  |
| schomburgkiana Pierre         |                   | (Guttiferae)  |                                                           |  |  |  |  |
| -                             |                   | . ,           |                                                           |  |  |  |  |
| Lansium domesticum            | Longkong          | Meliaceae     | Vitamin B & phosphorus supplement, heal lesions of        |  |  |  |  |
| Correa                        |                   |               | oral mucosa, reduced body heat                            |  |  |  |  |
| Aglaia dookko Griff           |                   |               |                                                           |  |  |  |  |
| Lepisanthes fruticosa         | Luna Nut          | Sapindaceae   | Antipyretic (root), antidiarrhoea (ripe fruit)            |  |  |  |  |
| (Roxb) Leenh.                 |                   |               |                                                           |  |  |  |  |
| Mimusops elengi L.            | Bullet wood       | Sapotaceae    | Gingival disorder (bark), cardiotonic & antipyretic,      |  |  |  |  |
|                               |                   |               | headach (flower)                                          |  |  |  |  |
| Pouteria campechiana          | Canistel          | Sapotaceae    | Febrifuge, skin eruptions (bark); ulcers (seed)           |  |  |  |  |
| Baehni                        |                   |               |                                                           |  |  |  |  |
| Spondias pinnata (L.f.)       | Hog plum          | Anacardiaceae | Eat as vegetable (young shoot), vitamin C                 |  |  |  |  |
| Kurz                          |                   |               | supplement (fruit), antithirst (fruit, root), diarrhoea   |  |  |  |  |
|                               |                   |               | (bark), anti- vomit, diuretic (bark)                      |  |  |  |  |
| Syzygium malaccense           | Malay apple,      | Myrtaceae     | Flatulent, antithirst                                     |  |  |  |  |
| (L.) Merr. & L.M. Perry       | Pomerac           |               |                                                           |  |  |  |  |
| Terminalia chebula            | Myrobalan         | Combretaceae  | Antipuretic, antiameobic antidiarrhoea, expectorant,      |  |  |  |  |
| Retz                          | Wood              |               | antipyretic                                               |  |  |  |  |
|                               | 1                 | 1             |                                                           |  |  |  |  |

### MATERIALS AND METHODS

#### Plant

The fruits were bought from local market or collected from orchard in Nakorn-Pathom province by the researchers of Faculty of Pharmacy, Silpakorn University in June, 2008. The voucher specimens were deposited in the Department of Pharmacognosy, Silpakorn University in Nakhon-Pathom, Thailand.



# Chemicals

ABTS<sup>2-</sup>, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfo-nate), was obtained as sulfonic acid from Sigma (St. Louis, USA). Trolox (or (+/-)–6-hydroxy-2,5,7,8-tetra-methyl-chroman-2carboxylic acid) was purchased from Aldrich (Steinheim, Germany). Potassium persulfate, FeSO<sub>4</sub> x 7H<sub>2</sub>O, and sodium acetate were purchased from Asia Pacific Specialty Chemicals Limited (Seven Hills, Australia). Folin-Ciocalteu reagent, FeCl<sub>3</sub> x 6H<sub>2</sub>O and NaCl were purchased from CarLo ErbaReagenti (Milano, Italy). 2,4,6-tri-pyridyl-s-triazine (TPTZ) was obtained from Fluka Chemie GmbH (Switzerland) and methanol was purchased from Merck (Darmstadt, Germany).

## Methanolic extract of fruits

The meat or peel of the fresh fruits were dried at 55 °C for 72 hrs before grinding and passing through sieve size 30 mesh The methanolic extraction was performed by maceration of the dried samples in methanol in a ratio of sample to methanol of 1:4 for 72 hrs. The filtrates were evaporated using a rotary evaporator (Buechi R205, Switzerland). The dried extracts were kept at 4 °C until used.

# Quantification of total polyphenols [42]

The 0.5 mL of methanolic fruit extracts (10  $\mu$ g/mL) were mixed with 0.5 mL of Folin-Ciocalteu reagent and 0.5 mL 10% Na<sub>2</sub>CO<sub>3</sub>. The mixture was shaked and placed at room temperature for 1 hr before measuring the absorbance at 760 nm. The calibration curve was prepared using gallic acid with a concentration range of 2 - 8 mg/L. The total polyphenols was calculated and reported as gallic acid equivalent (GEA), g of gallic acid in 100 g of dried fruits and in 100 g of methanolic extracts.

# Determination of antioxidant activity [43]

An antioxidant activity was performed by determination of scavenging effect on  $ABTS^{\bullet+}$  radical. The  $ABTS^{\bullet+}$  solution was prepared by mixing equal volume of 7 mM  $ABTS^{2-}$  in water with 4.9 mM potassium persulfate in water. The solution was protected from light and stored at room temperature for 12 – 16 hrs.  $ABTS^{\bullet+}$  formation was checked for its absorbance (A) at 734 nm using UV-Vis-Spectrophotometer, (Agilent 8453E UV-Visible Spectro-scopy System, Agilant Technology, USA.). The absorbance of  $ABTS^{\bullet+}$  was equilibrated to 0.7 ( $\pm$  0.02) by diluting with water at room temperature.

All samples were prepared in a concentration range of 0 - 10  $\mu$ g/ $\mu$ L, except for that of *D. indica* (0-20  $\mu$ g/ $\mu$ L), and of *C. carandas* and *A. elliptica* (0-50 $\mu$ g/ $\mu$ L). A portion of each dilution (50  $\mu$ L) was mixed with 3 mL of ABTS<sup>•+</sup> solution. After the mixture had been allowed to stand for 6 minutes at room temperature, its absorbance was measured at 734 nm using a spectrophotometer. Trolox was used as a standard. The antioxidant capacity was calculated as



an average of four replicate absorbance measurements, and reported as %inhibition along with  $IC_{50}$  and also as Trolox equivalent antioxidant capacity (TEAC).

Calculation of antioxidant capacity

Percent inhibition could be calculation as follows;

where A (solvent) was an absorbance of the sole solvent (no extract added) and A (compound) was an absorbance of the mixture of samples (or Trolox) and ABTS<sup>•+</sup> solution at 734.

The curve was plotted between % inhibition and concentration of sample or Trolox solutions. The regression coefficient ( $r^2$ ) was calculated from the linear curve. The IC<sub>50</sub> was determined from the concentration that resulted in 50% inhibition. TEAC was the ratio of % inhibition of the sample to % inhibition of Trolox at the same concentration.

### **RESULT AND DISCUSSION**

The %yield of methanolic extract of fruit in this experiment was shown in Table 2. The ripe fruit of *C. carandas* gave the highest %yield of extract (67.20%), while the raw fruit of *F. hirta* gave the lowest (12.86%). The ripe fruits of *A. elliptica*, *C. carandas*, *F. racemosa* and *M. elengi* and gave higher amount of %yield of extract than their raw fruits, except that of *D. peregrine*. The amount of total phenols of dried fruits and crude extracts of most fruits in this experiment were rather low. The meat of *T. chebula* fruit had moderate % yield (43.17%), but contained the highest amount of total phenols,  $6.96 \pm 0.12$  g/100 g of dried fruit and  $16.12 \pm 0$ . 29 g/100 g extract. The *B. motleyana* contained the lowest amount of total phenols,  $0.22 \pm 0.01$  g/100g extract. The raw fruit of *D. peregrine* and *M. elengi* contained higher amount of total phenols,  $0.22 \pm 0.01$  g/100g extract. The raw fruit of *D. peregrine* and *M. elengi* contained higher amount of total phenols,  $0.22 \pm 0.01$  g/100g extract. The raw fruit of *D. peregrine* and *M. elengi* contained higher amount of total phenols,  $0.22 \pm 0.01$  g/100g extract. The raw fruit of *D. peregrine* and *M. elengi* contained higher amount of total phenols,  $0.22 \pm 0.01$  g/100g extract. The raw fruit of *D. peregrine* and *M. elengi* contained higher amount of total phenols in their dried fruit than that of their ripe fruits and the ripe fruit of *A. elliptica*, *C. carandas* and *D. peregrine* presented higher amount of total phenols in their crude extract than that of their raw fruits. Most of crude extracts and dried fruits in this experiment contained rather low amount of total phenols.



| Type of fruit extracts        | Part of plant   | %yield | Amount of total-phenols(GAE)      |                                   |  |  |
|-------------------------------|-----------------|--------|-----------------------------------|-----------------------------------|--|--|
|                               |                 |        | g of gallic acid /                | g of gallic acid /                |  |  |
|                               |                 |        | 100g dried fruit                  | 100g extract                      |  |  |
| Angle Marmelos                | fruit           | 14.41  | $0.79\pm0.02$                     | $5.51\pm0.11$                     |  |  |
| Annona muricata L.            | fruit           | 50.86  | 0.65 ±0.02                        | $1.28\pm0.04$                     |  |  |
| Ardisia elliptica Thunb. S/ST | raw fruit       | 26.36  | $1.26{\pm}~0.05$                  | $\textbf{3.04} \pm \textbf{0.11}$ |  |  |
|                               | ripe fruit      | 41.46  | $1.48\pm0.10$                     | $5.64\pm0.37$                     |  |  |
| Averrhoa carambola L.         | fruit meat      | 38.31  | $\textbf{0.68} \pm \textbf{0.01}$ | $\textbf{1.77} \pm \textbf{0.04}$ |  |  |
| Baccaurea motleyana           | fruit           | 18.51  | $0.05\pm0.00$                     | $\textbf{0.29}\pm\textbf{0.01}$   |  |  |
| Baccaurea sapida Muell. Arg.  | fruit meat      | 59.36  | $0.22\pm0.01$                     | $0.37\pm0.02$                     |  |  |
|                               | fruit peel      | 21.48  | $\textbf{0.10}\pm\textbf{0.02}$   | $\textbf{0.47} \pm \textbf{0.08}$ |  |  |
|                               | pacenta         | 65.11  | $0.23\pm0.01$                     | $\textbf{0.71}\pm\textbf{0.04}$   |  |  |
| Carissa carandas Linn         | raw fruit       | 44.66  | $0.24\pm0.00$                     | $\textbf{0.53}\pm\textbf{0.01}$   |  |  |
|                               | ripe fruit      | 67.20  | $0.82\pm0.02$                     | $1.22\pm0.02$                     |  |  |
| Coccinia grandis              | ripe fruit      | 25.31  | $0.23\pm0.03$                     | $0.90\pm0.14$                     |  |  |
| Dillenia indica L.            | fruit           | 32.95  | $0.80\pm0.02$                     | $\textbf{2.43} \pm \textbf{0.07}$ |  |  |
| Diospyros peregrina Guerke    | raw fruit       | 35.580 | $\textbf{3.34}\pm\textbf{0.41}$   | $\textbf{1.73} \pm \textbf{1.16}$ |  |  |
|                               | ripe fruit      | 19.76  | $1.07\pm0.05$                     | $5.44\pm0.24$                     |  |  |
| Ficus hirta Vahl.             | fruit           | 12.86  | $0.26\pm0.01$                     | $1.98 \pm 0.08$                   |  |  |
| Ficus racemosa L.             | raw fruit       | 13.61  | $0.20\pm0.01$                     | $1.50\pm0.08$                     |  |  |
|                               | ripe fruit      | 18.85  | $0.21\pm0.03$                     | $1.13 \pm 0.15$                   |  |  |
| Garcinia duleis Kurz          | fruit           | 50.32  | $0.47\pm0.05$                     | $0.94\pm0.09$                     |  |  |
| Garcinia schomburgkiana       | fruit meat      | 42.13  | $0.56\pm0.03$                     | $1.32\pm0.08$                     |  |  |
|                               | leafless branch | 21.17  | $2.62\pm0.22$                     | $12.37\pm1.05$                    |  |  |
| Lansium domesticum Correa     | fruit peel      | 16.51  | $0.13\pm0.03$                     | $\textbf{0.81}\pm\textbf{0.19}$   |  |  |
| Lepisanthes fruticosa (Roxb)  | ripe fruit      | 62.65  | $0.48\pm0.02$                     | $0.77\pm0.03$                     |  |  |
| Mimusops elengi L.            | raw fruit       | 32.97  | $\textbf{4.58} \pm \textbf{0.21}$ | $\textbf{1.51}\pm\textbf{0.07}$   |  |  |
|                               | ripe fruit      | 38.61  | 3.26 ±0.06                        | $1.26\pm0.02$                     |  |  |
| Pouteria campechiana Baehni   | fruit           | 31.93  | $0.16\pm0.00$                     | $0.52\pm0.01$                     |  |  |
| Spondias pinnata              | fruit meat      | 26.30  | $0.12\pm0.01$                     | $\textbf{0.46} \pm \textbf{0.05}$ |  |  |
|                               | fruit peel      | 28.74  | $0.31\pm0.01$                     | $1.08\pm0.03$                     |  |  |
| Syzygium malaccense (L.)      | fruit           | 42.92  | $0.09\pm0.00$                     | $0.22\pm0.01$                     |  |  |
| Terminalia chebula Retz       | fruit meat      | 43.17  | $\textbf{6.96} \pm \textbf{0.12}$ | $16.12\pm0.29$                    |  |  |

#### Table 2 The percent yield and amount of total-phenols (GAE) in dried fruits and extracts.

Table 3 The slope, intercept and  $r^2$  of % inhibition equations,  $IC_{50}$  and TEAC values of the fruit extracts.

| Type of fruit extracts | Part of plant |                    | Equations of<br>methanol extract |                | IC <sub>50</sub> | TEAC  |
|------------------------|---------------|--------------------|----------------------------------|----------------|------------------|-------|
|                        |               | slope <sup>a</sup> | intercept                        | r <sup>2</sup> | (µg/mL)          |       |
| Trolox                 |               | 5.0248             | -0.9708                          | 0.9985         | 10.14            | 1     |
| Angle Marmelos         | fruit         | 0.0991             | 4.1147                           | 0.9759         | 463.02           | 0.03  |
| Annona muricata L.     | fruit         | 0.0213             | 2.0219                           | 0.8828         | 2252.49          | 0.008 |

January – March 2012



|                                        |                    |         |         |        |         | 1     |
|----------------------------------------|--------------------|---------|---------|--------|---------|-------|
| Ardisia elliptica Thunb.<br>S/ST       | raw fruit          | 0.0266  | 2.9073  | 0.9906 | 1770.40 | 0.01  |
|                                        | ripe<br>fruit      | 0.3572  | 2.2732  | 0.9874 | 133.61  | 0.076 |
| Averrhoa carambola L.                  | fruit<br>meat      | 0.0515  | 1.1201  | 0.9659 | 949.12  | 0.012 |
| Baccaurea motleyana                    | fruit              | 0.0097  | 0.6259  | 0.9110 | 5090.11 | 0.003 |
| <i>Baccaurea sapida</i><br>Muell. Arg. | fruit<br>meat      | 0.0164  | 1.2639  | 0.9272 | 2971.71 | 0.005 |
|                                        | fruit<br>peel      | 0.0968  | 7.0874  | 0.9293 | 443.31  | 0.03  |
|                                        | pacenta            | 0.0584  | 0.9355  | 0.9955 | 840.15  | 0.013 |
| Carissa carandas Linn                  | raw fruit          | 0.0219* | 12.4910 | 0.8444 | _**     | _**   |
|                                        | ripe<br>fruit      | 0.3622  | 1.6861  | 0.9940 | 133.39  | 0.08  |
| Coccinia grandis Voigt                 | ripe<br>fruit      | 0.0369  | 1.1844  | 0.9780 | 1322.92 | 0.01  |
| Dillenia indica L.                     | fruit              | 0.0748  | 5.0707  | 0.9825 | 600.66  | 0.025 |
| <i>Diospyros peregrina</i><br>Guerke   | raw fruit          | 1.6991  | 3.1351  | 0.9933 | 27.58   | 0.35  |
|                                        | ripe<br>fruit      | 0.7468  | 2.6712  | 0.9937 | 63.38   | 0.15  |
| <i>Ficus hirta</i> Vahl.               | raw fruit          | 0.1048  | 0.7298  | 0.9973 | 470.14  | 0.02  |
| Ficus racemosa L.                      | raw fruit          | 0.0506  | 0.0890  | 0.9758 | 986.38  | 0.01  |
|                                        | ripe<br>fruit      | 0.0429  | 0.7464  | 0.9941 | 1148.10 | 0.01  |
| Garcinia                               | fruit              | 0.0701  | 3.8099  | 0.9430 | 658.92  | 0.02  |
| schomburgkiana                         | meat               | 1.0     |         |        |         |       |
|                                        | leafless<br>branch | 1.2576  | 4.0073  | 0.9874 | 36.57   | 0.26  |
| Garcinia duleis Kurz                   | fruit              | 0.0629  | 3.1221  | 0.9614 | 745.28  | 0.02  |
| <i>Lansium domesticum</i><br>Correa    | fruit<br>peel      | 0.0462  | 1.5003  | 0.9869 | 1049.78 | 0.012 |
| Lepisanthes fruticosa<br>(Roxb)        | ripe<br>fruit      | 0.0711  | 1.0821  | 0.9967 | 688.02  | 0.02  |
| Mimusops elengi L.                     | raw fruit          | 1.2009  | 7.7204  | 0.9462 | 35.21   | 0.26  |
|                                        | ripe<br>fruit      | 0.2810  | 3.6359  | 0.9841 | 165.00  | 0.06  |
| <i>Pouteria campechiana</i><br>Baehni  | fruit              | 0.0198  | 1.1197  | 0.9526 | 2468.70 | 0.006 |
| <i>Spondias pinnata</i> (L.f.)<br>Kurz | fruit<br>meat      | 0.0131  | 0.6237  | 0.9610 | 3769.18 | 0.004 |



|                         | fruit | 0.0532 | 1.4589 | 0.9904 | 912.43  | 0.014 |
|-------------------------|-------|--------|--------|--------|---------|-------|
|                         | peel  |        |        |        |         |       |
| Syzygium malaccense     | fruit | 0.0186 | 0.5595 | 0.9830 | 2658.09 | 0.005 |
| (L.)                    |       |        |        |        |         |       |
| Terminalia chebula Retz | fruit | 1.7182 | 5.3856 | 0.9825 | 25.97   | 0.35  |
|                         | meat  |        |        |        |         |       |

The antioxidant of all extracts of fruits in this experiment was rather low as shown in Table 3. The highest antioxidant activity (TEAC = 0.35) were shown in T. Chebula and D. peregrine. The T. Chebula indicated the highest amount of total phenolics, and antioxidant activity. These results were according to the report of Bajpai. et.al., 2005 that T. Chebula fruit was a source of gallic acid and had good antioxidant activities [44]. The extract that showed inverse proportion between its amount of total phenolics contents and its TEAC values was D. peregrine. The TEAC of D. peregrine raw fruit extract was 0.35 equal to T. Chebula. However, the total phenolics content in D. peregrine extract was 1.73 g/100 g crude extract comparing to 16.12 g/100 g crude extract of T. Chebula. The other inverse result was the total phenolic content of D. peregrine raw fruit that was lower than ripe fruit, but the raw fruit presented higher TEAC value. For comparing between fruit meat and leafless branch of G. schomburgkiana, the total phenolic content of the leafless branch was not only higher than the fruit meat, but also the antioxidant activity. For B. motleyana fruit extract, it gave the lowest antioxidant activity which according to low amount of total phenolic content in its extract. In addition, the S. malaccense extract presented the lowest total phenolic content which related to its low antioxidant activity. In this study the A. carambola fruit extract contained rather low antioxidant activity (TEAC = 0.012). However Shui and Leong reported that A. carambola fruit juice was good source of antioxidant activities, which its antioxidant activities were attributed to L-ascorbic, (-)-epicatechin and gallic acid in gallotannin forms [45].

#### CONCLUSION

The total phenolic contents and antioxidant activities of fruit extracts in this experiment were rather low. The *T. Chebula* fruit meat extracts showed highest total phenolic content and antioxidant activity. Most fruits, that more than one type of crude fruit of each fruit (eg. meat, peel, raw fruit and ripe fruit) was extracted, indicated their antioxidant activities direct proportion to their amount of total phenols. The correlation between amount of total phenolics and antioxidant activities in raw and ripe fruit could not make a conclusion. However, if the raw fruit presented higher antioxidant activity than the ripe fruit, it showed distinctive higher. But when the ripe fruit gave higher antioxidant activity than the raw fruit, it showed small higher, except *F. rcemosa* that raw and ripe fruit had equal antioxidant activities. The rather low antioxidant activities of most extracts in this study may correlate to the low amount of total phenolic content in the extracts.



### ACKNOWLEDGEMENT

This research work was kindly supported by Natural Research Council of Thailand, NRCT. We would like to thanks the Faculty of Pharmacy, Silpakorn University and Associated Prof. Dr. Sindhchai Keokitichai for the facilities and beneficially advise.

#### REFERENCES

- [1] Bunyapraphatsara N, Chokchaijareonporn A. Sa-mund-phai Mai-pern-ban. No.2. Prachachon Co., Bangkok. 1998.
- [2] Bunyapraphatsara N, Chokchaijareonporn A. Sa-mund-phai Mai-pern-ban. No.3. Prachachon Co., Bangkok. 1999.
- [3] Bunyapraphatsara N, Chokchaijareonporn A. Sa-mund-phai Mai-pern-ban. No.4. Prachachon Co., Bangkok. 2000.
- [4] Na Songka, B. Sa-mund-phai Thai No.1 second ed., Funny Publishing Ltd., Bangkok. Pahonyothin, Bangkok. 1982.
- [5] Poopatpong L. Sa-mund-phai Thai No.3 Funny Publishing Ltd., Pahonyothin, Bangkok. 1982.
- [6] Poopatpong L. Sa-mund-phai Thai No.5 Chutima Kaprim Ltd., Phayathai, Bangkok. 1987
- [7] Leaman DJ, Arnason JT, Yusuf R, Sangat-Roemantyo H, Soedjito H, Angerhofer CK, Pezzuto JM. J Ethanopharmacol 1995; 49: 1-16.
- [8] Jaramillo MC, Arango GJ, Gonzalez MC, Robledo SM, Velez ID. Fitoterapia 2000; 71(2):183-186.
- [9] Luna Jde S, De Carvalho JM, De Lima MR, Bieber LW, Bento Ede S, Franck X, Sant'ana AE. Nat Prod Res 2006; 20(3):253-257.
- [10] Padmawinata K, Hoyaranda E. Abstract of the 4<sup>th</sup> Asian Symp Med Plants Spices, Bangkok, Thailand. 1980; 159.
- [11] Mokkhasmit M, Ngarmwathana W, Sawasdimongkol K, Permphiphat U. J Med Ass Thailand 1971; 54(7):490-504.
- [12] Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. J Nat Prod 1991; 54(1):143-154.
- [13] Dhar ML, Dhar MN, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS. Indian J Exp Blol 1973; 11:43-54.
- [14] Joglekar SN, Gaitonde BB. Jpn J Pharmacol 1970; 20(3):367-372.
- [15] Vohra MM, DE NN. Indian J Med Res 1963; 51:937-940.
- [16] Kumar GP, Sudheesh S, Vijayalakshmi NR. Planta Med 1993; 59(4):330-332.
- [17] Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. J Nat Prod 1991; 54(1):143-154.
- [18] Sookvanichsilp N, Silpa-Archa W, Laemongkol D, Tanawiriyakul P, Tongkow H. Asian J Pharm Suppl 1986; 6(8):132.
- [19] Bhakuni OS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN. Indian J Exp Biol 1969; 7:250-262.
- [20] Uppalapati L, Rao JT. Chem Petro Chem J 1979; 10(8):21-23.
- [21] Choudhary DN, Singh JN, Verma SK, Singh BP. Indian J Exp Biol 1990; 28(8):714-716.
- [22] Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C. Inain J Exp Biol 1968; 6:232-247.



- [23] Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Pat naik GK, Prakash V. Indian J Exp Biol 1988; 26(11):883-904.
- [24] Jain SR, Sharma SN. Planta Med 1967; 15(4):439-442.
- [25] Bharkuni DS, Dhar ML, Dhar MM, Dhawan BN, Gupta B, Srimali RC. Indian J exp Biol 1971; 9:91.
- [26] Bhakuni DS, Goel AK, Jain S, Mehrotra BN, Patnaik GK, Prakash V. Indian J Exp Biol 1988; 26(11):883-904.
- [27] Singh R. Phytopathol Mediterr 1971; 10:211.
- [28] Forestieri AM, Pizzimenti FC, Monforte MT, Bisgnano G. Pharmacol Res Commun Suppl 1988; 20(5):33-36.
- [29] Murakami A, Jiwajiinda S, Koshimizu K, Ohigashi H. Cancer Lett 1995; 95 (1/2):137-146.
- [30] Yapp DT, Yap SY. J Ethnopharmacol 2003; 85(1):145-150.
- [31] Omar S, Zhang J, MacKinnon S, Leaman D, Durst T, Philogene BJ, Arnason JT, Sanchez-Vindas PE, Poveda L, Tamez PA, Pezzuto JM. Curr Top Med Chem 2003; 3(2):133-139.
- [32] Monzon RB, Alvior JP, Luczon LL, Morales AS, Mutuc FE. Southeast Asian J Trop Med Public Health 1994; 25(4):755-759.
- [33] Leatemia JA, Isman MB. Phytoparasitica 2004; 32(1):30-37.
- [34] Kanjanapothi D, Tejasen P. Chiang Mai Med Bull 1971; 10:89-97.
- [35] Hattori M, Nakabayashi T, Lim YA, Miyashiro H, Kurokawa M, Shiraki K, Gupta MP, Correa M, Pilapitiya U. Phytother Res 1995; 9(4):270-276.
- [36] Deshmukh SK, Jain PC., Agrawal SC. Fitoterapia 1986; 58(4):295-297.
- [37] Banerji R, Srivastava AK, Misra G, Nigam SK, Singh S, Nigam SC, Saxena RC. Indian Drugs 1979; 17:6-8.
- [38] Sato Y, Oketani H, Singyouchi K, Ohtsubo T, Kihara M, Shibata H, Higuti T. Biol Pharm Bull 1997; 20(4):401-404.
- [39] Chung TH, Kim JC, Lee CY, Moon MK, Chae SC, Lee IS, Kim SH, Hahn KS, Lee IP. Phytother Res 1997; 11(3):179-182.
- [40] Cheng HY, Lin TC, Yu KH, Yang CM, Lin CC. Biol Pharm Bull 2003; 26(9):1331-1335.
- [41] Lee HS, Won NH, Kim KH, Lee H, Jun W, Lee KW. Biol Pharm Bull 2005; 28(9):1639-1644.
- [42] Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M, Nakayama T. J Agric Food Chem 2002; 50(2):373-377.
- [43] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Free Radic Biol Med 1999; 26:1231-1237.
- [44] Bajpai M, Pande A, Tewari SK, Prakash D. Int J Food Sci Nutr 2005; 56(4):287-291.
- [45] Shui G, Leong LP. J Chromat A 2004; 1022(1): 67-75.