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ABSTRACT 

 
                This study presents a comprehensive transcriptomic analysis of Saccharomyces cerevisiae using 
publicly available RNA-Seq data (GSE260736) to investigate gene expression changes under specific 
experimental conditions. Eight SRA samples were downloaded and converted to FASTQ format, followed by 
quality control using FastQC and MultiQC. Reads were aligned to the S. cerevisiae R64 reference genome 
using HISAT2, and gene-level quantification was performed using featureCounts. Differential gene 
expression analysis was conducted using DESeq2, identifying significantly upregulated and downregulated 
genes. Functional enrichment analysis using KEGG and Gene Ontology (GO) revealed key pathways 
associated with metabolism, cell cycle regulation, and transmembrane transport. Visualizations including 
volcano plots, heatmaps, and enrichment plots provided biological insights into gene regulation patterns. 
This project successfully demonstrates the utility of RNA-Seq in understanding genome-wide transcriptional 
responses and highlights the relevance of bioinformatics tools in functional genomics research.  
Keywords: RNA-Seq, Saccharomyces cerevisiae, GRR1, DESeq2, Differential Gene Expression, KEGG, 
Functional Enrichment. 
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INTRODUCTION 
 

Saccharomyces cerevisiae, sometimes known as baker's yeast, is a well-researched eukaryotic 
model organism in the fields of molecular biology, genetics, and biotechnology. It has proved useful in 
understanding fundamental biological processes like as gene regulation, cell cycle control, and 
metabolism. The genome of S. cerevisiae was the first in eukaryotes to be entirely sequenced, laying the 
groundwork for various genomic and post-genomic investigations (Goffeau et al., 1996). 

 
Saccharomyces cerevisiae has various features that make it a suitable model organism, including 

a small genome size (about 12 Mb), ease of cultivation, quick generation time, and the availability of a 
diverse set of genetic tools and mutant libraries. It shares many cellular and genetic systems with higher 
eukaryotes, making it a useful proxy for understanding complicated biological processes (Botstein and 
Fink, 2011). 
 

In this study, we investigated the transcriptional landscape of S. cerevisiae using RNA- Seq data 
from the NCBI Gene Expression Omnibus (GSE260736) (Barrett et al., 2013). The dataset contains eight 
samples, including both wild-type and grr1-deficient strains, making it excellent for investigating 
genotype-dependent expression changes. The bioinformatics approach used in this project involves data 
gathering, read preprocessing and quality control (FastQC and MultiQC), alignment to the R64 reference 
genome with HISAT2, gene-level quantification with featureCounts, and DEG analysis with DESeq2. This 
is followed by functional annotation and visualization with KEGG, GO, and related tools (Andrews 2010; 
Kim et al., 2015; Liao et al., 2014). 

 
Transcriptomic study in S. cerevisiae with RNA-Seq has provided insights into stress responses, 

environmental variations, genetic alterations, and metabolic regulation. Studies have shown that yeast 
gene expression is extremely flexible and can be dynamically controlled at both the transcriptional and 
post-transcriptional stages (Gasch et al., 2000). Using techniques like DESeq2, researchers can discover 
genes that exhibit statistically significant changes between experimental conditions (Love et al., 2014). 

 
Following DEG identification, enrichment analysis using pathway databases such as KEGG (Kyoto 

Encyclopedia of Genes and Genomes) and functional categories from GO (Gene Ontology) aids in 
understanding the biological context of the observed expression differences. 
 

These databases enable the mapping of DEGs to recognized metabolic pathways, cellular 
activities, and molecular processes (Kanehisa and Goto, 2000; Ashburner et al., 2000). 

 
In this study, we investigated the transcriptional landscape of S. cerevisiae using RNA- Seq data 

from the NCBI Gene Expression Omnibus (GSE260736) (Barrett et al., 2013). The dataset contains eight 
samples, including both wild-type and grr1-deficient strains, making it excellent for investigating 
genotype-dependent expression changes. The bioinformatics approach used in this project involves data 
gathering, read preprocessing and quality control (FastQC and MultiQC), alignment to the R64 reference 
genome with HISAT2, gene-level quantification with featureCounts, and DEG analysis with DESeq2. This 
is followed by functional annotation and visualization with KEGG, GO, and related tools (Andrews 2010; 
Kim et al., 2015; Liao et al., 2014). 

 
This initiative not only investigates yeast transcriptomics, but it also demonstrates modern 

bioinformatics tools in action. It demonstrates how publicly available datasets, when properly examined, 
can reveal unique insights while reinforcing established biological reactions. The findings provide a 
comprehensive view of gene expression changes caused by genetic disruption, with implications for 
future experimental validation and systems-level modeling in yeast biology. 
 

MATERIALS AND METHODS 
 
Data Retrieval 
 

The RNA-Seq dataset GSE260736 was downloaded from the NCBI Gene Expression Omnibus (GEO) 
repository (https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013). The dataset includes eight 
samples: four wild-type and four grr1-deficient strains of S. cerevisiae. The SRA Toolkit 
(https://github.com/ncbi/sra-tools) was used to retrieve the sample files via the prefetch command and 
convert them to FASTQ format using fasterq-dump (Leinonen et al., 2011). 

https://www.ncbi.nlm.nih.gov/geo/
https://github.com/ncbi/sra-tools
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Quality Control of Raw Reads 
 

Quality control of the all samples was conducted using FastQC (Andrews, 2010) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC generates quality metrics such as 
Phred scores, GC content, and adapter presence. MultiQC ( https://multiqc.info/ was used to aggregate 
FastQC reports into a single summary (Ewels et al., 2016). These tools helped identify any quality issues 
prior to downstream processing. 
 
Reference Genome and Annotation 
 

The reference genome (strain S288C, R64-1-1) and corresponding GTF annotation file for S. 
cerevisiae were downloaded from Ensembl Fungi https://fungi.ensembl.org/index.html (Howe et al., 
2020). These were used for genome indexing and read alignment. 
 
Read Alignment Using HISAT2 
 

Reads were aligned to the reference genome using HISAT2 
https://daehwankimlab.github.io/hisat2/ (Kim et al., 2015). HISAT2 is a splice-aware aligner known for 
speed and accuracy. It uses a Burrows-Wheeler Transform and FM index for efficient alignment. SAM 
output files were converted to BAM, sorted, and indexed using SAMtools (http://www.htslib.org/) (Li et 
al., 2009). 
 
Gene Quantification Using FeatureCounts 
 

Gene-level quantification was performed using featureCounts 
(http://bioinf.wehi.edu.au/featureCounts/) (Liao et al., 2014). This tool counts the number of reads that 
map to each gene, utilizing the GTF file. The resulting matrix formed the basis for differential expression 
analysis. 

 
Differential Expression Analysis Using DESeq2 
 

The DESeq2 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html) package 
was used in R to perform normalization, statistical testing, and differential expression modeling (Love et 
al., 2014). A sample metadata file was created to define experimental conditions. Genes with adjusted p-
values < 0.05 and |log2 fold change| ≥ 1 were considered significantly differentially expressed. 
 
Functional Enrichment Using KEGG and GO 
 

Enrichment analysis was performed using clusterProfiler 
(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) (Yu et al., 2012). KEGG 
https://www.genome.jp/kegg/ and GO (Gene Ontology) (http://geneontology.org/) were queried for 
pathway and functional term enrichment using DEGs. The org.Sc.sgd.db annotation package provided 
gene mappings specific to yeast. 
 
Visualization of Results 
 

Data visualization was performed in R using packages such as ggplot2, pheatmap, and 
clusterProfiler. Volcano plots were generated to depict DEG significance and directionality. Heatmaps 
displayed expression trends for top DEGs. Dotplots and barplots summarized KEGG and GO enrichment 
results, highlighting key biological processes impacted by the genetic perturbation. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
http://www.htslib.org/
http://bioinf.wehi.edu.au/featureCounts/
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://www.genome.jp/kegg/
http://geneontology.org/
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Figure 1. Diagrammatic representation of methodology workflow 
 

RESULTS AND DISCUSSIONS 
 

FASTQC Quality Assessment 
 

The FASTQC analysis provided a comprehensive overview of raw read quality across all eight S. 
cerevisiae RNA-Seq samples. Notably, each sample exhibited high-quality sequencing reads, with no poor-
quality sequences flagged, indicating optimal data acquisition. The GC content ranged between 40% 
and 45%, which aligns well with the known genomic GC content of S. cerevisiae, reinforcing the dataset’s 
accuracy and species specificity. The reads spanned lengths from 8 to 139 base pairs, typical for Illumina-
generated short-read libraries. Moreover, the consistent encoding format (Sanger/Illumina 1.9) across all 
samples ensures uniform base quality interpretation. These results affirm the reliability and suitability 
of the raw reads for downstream analyses, including alignment, quantification, and differential gene 
expression analysis, as they reflect high sequencing fidelity and minimal technical bias (Andrews, 2010). 
 

Table 1: FASTQC Summary of All 8 Samples 
 

Sample Accession Total 
Sequences 

%GC Poor Quality 
Sequences 

Sequence 
Length (bp) 

Encoding 
Format 

SRR28206293.fastq 8,754,582 45 0 8–139 Sanger / 
Illumina 1.9 

SRR28206294.fastq 9,394,578 44 0 8–139 Sanger / 
Illumina 1.9 

SRR28206295.fastq 7,135,566 44 0 8–139 Sanger / 
Illumina 1.9 

SRR28206296- 
005.fastq 

20,024,460 41 0 8–139 Sanger / 
Illumina 1.9 

SRR28206297- 
001.fastq 

13,118,330 42 0 8–139 Sanger / 
Illumina 1.9 

SRR28206298- 
004.fastq 

12,725,965 42 0 8–139 Sanger / 
Illumina 1.9 

SRR28206299- 
007.fastq 

10,536,123 43 0 8–139 Sanger / 
Illumina 1.9 

SRR28206300- 
008.fastq 

31,949,158 40 0 8–139 Sanger / 
Illumina 1.9 
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MultiQC Summary Report 
 

The MultiQC report compiled and visualized FastQC outputs for all eight RNA-Seq samples, 
providing a unified overview of sequencing quality metrics. One of the most prominent metrics was the 
percentage of duplicated reads (% Dups), which ranged from 72.5% (SRR28206295) to 91.2% 
(SRR28206300-008). Although high duplication rates may raise initial concern, such values are 
commonly observed in RNA-Seq datasets, especially in eukaryotic organisms with a compact genome and 
dominant expression of certain transcripts (Andrews, 2010; Conesa et al., 2016). In this study, the high 
duplication seen in SRR28206300- 008 corresponds with its high sequencing depth (31.9 million 
reads), suggesting either biological overrepresentation of certain mRNAs or PCR amplification bias 
during library preparation. Importantly, these duplications do not necessarily compromise downstream 
analysis but should be accounted for during interpretation (Parekh et al., 2016). 
 

The GC content across samples was between 40% and 45%, which is consistent with the known 
GC content of the Saccharomyces cerevisiae genome, typically reported around 38– 41% (Botstein & Fink, 
2011). This consistency confirms that the libraries are free from major contamination and that 
sequencing was unbiased in terms of nucleotide composition. Deviations in GC content would otherwise 
indicate technical artifacts or the presence of sequences from other organisms. 
 

Furthermore, the total number of sequences (M Seqs) per sample varied between 7.1 and 31.9 
million reads, reflecting differences in sequencing depth and perhaps library complexity. All samples, 
however, exceeded the general minimum requirement of ~5 million reads for differential expression 
analysis, ensuring robust statistical power and biological insight (Schurch et al., 2016). 
 
Together, these metrics validate the high quality and technical integrity of the RNA- Seq dataset. The data 
is suitable for downstream processes such as read alignment, transcript quantification, and differential 
gene expression analysis. MultiQC served as an essential tool for consolidating these evaluations in a 
clear, comparative format (Ewels et al., 2016). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: MultiQC Summary Report 
 
Differential Gene Expression Analysis (DEGs) 
 
Volcano Plot 
 

The volcano plot provides a clear visual overview of the differentially expressed genes between 
the wild-type and grr1-deficient Saccharomyces cerevisiae samples. It combines statistical significance (–
log10 adjusted p-value) with the magnitude of gene expression changes (log2 fold change). Genes located 
toward the right of the plot with high fold changes and low p-values are significantly upregulated, while 
those on the left are significantly downregulated. 

 
In this study, a total of 6,382 genes were analyzed using the DESeq2 package in R. Of these, 735 

genes were significantly differentially expressed, with 489 upregulated and 246 downregulated 
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(adjusted p < 0.05). The volcano plot displays these groups in red and green, respectively, while non-
significant genes are shown in gray. Notably, the upregulated genes are enriched in metabolic and sugar-
related processes, while the downregulated genes include several involved in ribosomal function, amino 
acid biosynthesis, and transmembrane transport. 

 
This distribution suggests a marked transcriptomic response to the GRR1 deletion. GRR1 is a 

known component of the SCF ubiquitin ligase complex and plays a key role in nutrient signaling and 
regulation of transcriptional repressors. Its loss likely triggers compensatory metabolic reprogramming, 
which is evident from the gene expression changes visualized in the volcano plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Volcano Plot 

 
Heatmap of Top 30 Differentially Expressed Genes (DEGs) 
 

The heatmap visualizes the expression patterns of the top 30 differentially expressed genes 
(DEGs) across all eight RNA-Seq samples. The expression values were normalized and clustered using 
hierarchical clustering. Each row represents a gene, and each column corresponds to a sample (SRR ID). 
The color gradient reflects gene expression levels: red indicates high expression, while blue indicates 
low expression. 

 
This plot shows a clear separation between wild-type and grr1-deficient groups, with 

consistent expression patterns among biological replicates. Upregulated genes are associated with 
metabolic activities, while downregulated genes are linked to amino acid biosynthesis and stress response 
pathways. The clustering pattern highlights the transcriptional distinction between the two conditions, 
supporting the reliability of the DEG analysis. 

 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 

 
Figure 4: Heatmap of Top 30 Differentially Expressed Genes (DEGs) 
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KEGG Pathway Enrichment Analysis 
 
KEGG Pathway Enrichment: Barplot View 
 

This barplot illustrates the top enriched KEGG pathways among the differentially expressed 
genes (DEGs), based on adjusted p-values and gene involvement. The pathways on the y-axis are ranked by 
significance, while the x-axis indicates the number of DEGs associated with each pathway. The color 
gradient represents statistical significance, with darker shades indicating higher enrichment. 

 
Among the upregulated genes, pathways such as pentose and glucuronate interconversions, 

and fructose and mannose metabolism were prominently enriched. In contrast, downregulated genes 
were mostly associated with pathways like riboflavin metabolism, amino acid biosynthesis, and cell 
cycle regulation. This functional shift suggests a metabolic adaptation in the grr1-deficient strain, 
aligning with the known role of GRR1 in nutrient signaling and cell cycle control. 
 

 
 

Figure 5: Barplot View: KEGG Pathway Enrichment 
 
KEGG Dotplot Visualization 
 

The KEGG dotplot further highlights enriched biological pathways based on the list of 
differentially expressed genes. Each dot represents a pathway, with its position reflecting the enrichment 
significance (adjusted p-value) and the ratio of genes involved (GeneRatio). Dot size corresponds to the 
number of genes, while the color gradient indicates statistical strength—darker colors signify stronger 
enrichment. This plot supports findings from the previous barplot, emphasizing pathways such as 
oxidative phosphorylation, glycolysis/gluconeogenesis, and sugar metabolism among upregulated 
genes. For downregulated genes, enriched pathways include ribosome biogenesis, thiamine 
metabolism, and methionine biosynthesis. These results indicate significant transcriptional 
reprogramming affecting energy production and biosynthesis in the grr1- deficient cells. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: KEGG Dotplot Visualization 
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KEGG Pathway Enrichment: Cluster-wise Dotplot (Upregulated vs Downregulated) 
 

This dot plot illustrates a comparative enrichment analysis of KEGG pathways for upregulated 
and downregulated differentially expressed genes (DEGs) in grr1-deficient S. cerevisiae. The X-axis 
distinguishes the two clusters: upregulated (left) and downregulated (right), while the Y-axis lists the 
enriched KEGG pathways. Each dot represents a pathway, where dot size reflects the gene ratio (i.e., the 
proportion of genes from the pathway among the DEGs), and the color gradient corresponds to 
adjusted p-values (from red for highly significant to blue for less significant). 
 

• Upregulated Pathways: Pentose and glucuronate interconversions and fructose and mannose 
metabolism were significantly enriched, with high gene ratios and very low adjusted p-values. These 
suggest enhanced activity in carbohydrate metabolism, possibly compensating for altered energy 
demands in the mutant. 

• Downregulated Pathways: Pathways such as riboflavin metabolism, thiamine metabolism, cysteine 
and methionine metabolism, and cell cycle–yeast were prominently suppressed. This reflects a broad 
metabolic downregulation, particularly in vitamin and amino acid biosynthesis, and could point 
toward slowed growth or impaired proliferation. 

 
This figure effectively summarizes the functional divergence in transcriptional activity 

between the two conditions. Enrichment of sugar metabolism in upregulated DEGs and depletion of 
cofactor and amino acid pathways in downregulated DEGs provides a cohesive  picture  of  metabolic  
reprogramming  in  the  absence  of  functional  GRR1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Cluster-wise Dotplot (Upregulated vs Downregulated) 
 
Gene Ontology (GO) Enrichment Analysis: Biological Process (BP) 
 

This figure represents the enriched Gene Ontology (GO) terms associated with Biological 
Processes (BP) for both upregulated and downregulated genes. The plot captures the top GO terms based 
on adjusted p-values and gene ratios, visualized as colored dots where size reflects the number of genes 
and color indicates statistical significance. 

 
Among upregulated genes, enriched biological processes include: 
 

• Carbohydrate and polyol catabolism 
• Monosaccharide transport 
• Response to nutrient levels 

 
For downregulated genes, enriched terms include: 
 

• Amino acid transmembrane transport 
• Cell cycle processes 
• Cofactor biosynthesis 



ISSN: 0975-8585 
 

May – June  2025  RJPBCS 16(3S)  Page No. 55 

 
These patterns suggest that grr1-deficient cells activate metabolic adaptation pathways while 

downregulating biosynthetic and proliferative functions, consistent with stress response and energy 
conservation strategies in yeast. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Gene Ontology (GO) Enrichment Analysis: Biological Process (BP) 

 
Functional Enrichment Analysis: KEGG vs GO Biological Process 
 

This combined barplot presents an integrated view of Gene Ontology Biological Processes 
associated with both upregulated (red) and downregulated (blue) differentially expressed genes. The 
left side of the plot highlights processes enriched in upregulated genes, while the right side shows those 
enriched in downregulated ones. 

 
Upregulated genes were mostly linked to metabolic processes, including polyol catabolism, 

carbohydrate degradation, and transmembrane sugar transport. These reflect enhanced nutrient 
sensing and energy metabolism in the grr1-deficient strain. Downregulated genes, on the other hand, 
were significantly enriched in amino acid transport, biosynthesis, and cell cycle regulation, 
suggesting repression of growth-related pathways under altered regulatory conditions. 
 

This visualization offers a clear comparison of how transcriptional regulation diverges between 
functional categories in response to the mutation, reinforcing the biological shifts previously identified 
through KEGG and GO analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Functional Enrichment Analysis: KEGG vs GO Biological Process 
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CONCLUSION 
 

This study provides a comprehensive transcriptomic insight into the molecular consequences of 
GRR1 gene deletion in Saccharomyces cerevisiae, emphasizing its pivotal role in maintaining cellular 
homeostasis and metabolic regulation. The RNA-seq analysis revealed distinct differential gene 
expression patterns, with significant downregulation of genes involved in vital cellular processes such as 
the cell cycle, vitamin biosynthesis, and amino acid metabolism, while a limited number of genes, 
primarily linked to alternative sugar metabolism, were upregulated. Functional enrichment analysis 
through KEGG and GO pathways further supported the centrality of GRR1 in regulating metabolic 
pathways, nutrient transport, and biosynthetic processes. These findings affirm that GRR1 deletion 
disrupts fundamental biological networks, particularly those associated with carbon source utilization, 
transmembrane transport, and the regulation of cellular growth and division. The observed shift toward 
alternative metabolic routes suggests a compensatory adaptation in response to the loss of glucose sensing 
and signaling, reinforcing the gene’s role in nutrient-responsive pathways. Overall, this study not only 
elucidates the downstream effects of GRR1 inactivation at the transcriptomic level but also contributes to 
a broader understanding of gene regulatory networks in yeast, offering a foundation for future functional 
and experimental validation. 
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