

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Potential Activity Of The Components Of *Madhuca longifolia* As A Hepatoprotective Agent Through In Vitro And In Silico Docking Technique Against The Orphan Nuclear Receptors.

Jerine Peter S, Mary Thomas, Gayathri Ashok, Megha Treesa Saju, and Evan Prince Sabina*.

School of Biosciences and Technology, VIT, Vellore-632014, India

ABSTRACT

Hepatotoxicity is an adverse complication of most prescribed drugs. Studies on Madhuca longifolia have proven to be used for various medical treatments. The aim of the current study is to predict the inhibitory effect of the active ingredients of the components of M. longifolia against the toxic receptor and its pharmacological properties. The in vitro analysis was carried out in the seed oil to know its beneficial effect on total phenolic content, DPPH assay, catalase activity and peroxidase activity. The chosen toxic receptors are apo human pregnane X receptor, nuclear bile acid receptor FXR, constitutive and rostane receptor, LXR and Nf-kB through molecular docking techniques. 3D structures of the receptors and ligands were obtained from RCSB data bank and Corina molecular network. Docking experiments were carried out on Patch Dock server and the docked complexes were analyzed using Pymol molecule viewer which predicts the bond length and interacting residue of ligand-protein complexes. The seed oil showed the beneficial effect in in vitro studies. MiSaponin A and MiSaponin B has an effective potential in treating the hepatotoxicity. **Keywords:** Hepatotoxicity, Madhucalongifolia, Insilico Docking, Computational Methods, In vitro

*Corresponding author

INTRODUCTION

Dealing with natural medicine from the natural plants is an oldest form of practice in humankind. The knowledge of medicinal plants was been used much effectively against human illness through its part like barks, leaves, fruits and flowers. The experienced results by the human have paid the way for the high usage of medicinal plant until the discovery of modern medicines. Herbal plants are still used as the mainstream for about 75-80% of the world's population in developing countries as health care supplements. The usage of medicinal plants is still been increased due to the minimal efficacy of synthetic drugs [1].

Madhucalongifolia Syn.M.indica(Sapotaceae) is an important tropical tree present largely in the forest areas of north Indian and central plains which is not well known. It is also called as mahuwa, mahua, mohulo, or IIupallrvippachettu. It's a fast growing tree which grows to the height of 20 meters and it is an ever green tree which matures and starts bearing even at 8-15 years that can yield fruits for upto 60 years. It is mostly found in the moist tropical forests of western India from Konkan southwards to Travancore, Deccan that is common in Ceylon, Carnatic and upper Burma[2]. This can yield various important products from its seed, bark, fruits, flower, leaves and seed oil. The mahua butter was named after its butter characteristics in oil[3]. This mahua butter is being characterized by its rich content of phytosterols, the major tocopherol isomer and α and β isomers. Madhucalongifolia have the various important activities like pharmacological, antioxidant, analgesic, anticancer, anticonvulsant, immune modulatory and heap to protective activity. The outcome of these studies would results in providing a convincing support for its later clinical use in present day medicine[4]. The various disease that can be treated with the different parts of this tree are tuberculosis, rheumatoid arthritis, cholera, influenza piles, helminthiasis, low semen count, headache, infections. Besides these it can be used as a blood purifier and as a counteragent to poison. The flower is edible and is mainly used to make syrup for medicinal purposes. It is an essential drink used during celebrations by both men and women. The oil of M. longifolia seeds has a refractive index of 1.452 which is rich in fatty acids like palmitic, stearic, oleic, linolenic[5]. The ethanolic extract of Madhuca longifolia can treat the toxicity induced in rats which was found to normalize the elevated serum urea and creatinine that was reduced significantly by its treatment at different doses of M. longifolia extract. That demonstrated the efficacy of Madhuca longifolia in treating the toxicity against the hepto and renal damage [6].

Liver plays an important role in the maintenance of the homeostasis of body. The important role of liver is supplying nutrient, fighting against the pathogens and other metabolic pathways. Hepatotoxicity is the chemical driven damages caused in the liver[7].Hepatotoxicity is caused due to the oxidative stress that leads to metabolic disorder. It is also caused due to multi-dimensional dysfunction or xenobiotics which is caused by the hepatotoxic chemical that will cause lipid peroxidation, oxidative damage and mitochondrial dysfunction[8].Some pharmaceutical drugs like chlorpromazine, halothane, isoniazid and amoxicillin-clavulanate are documented to cause liver damage. Liver Tox is an online database that provides the accurate up-to-date information about the causes, diagnosis, frequency, severity of liver injury. From the case report on hepatotoxicity, it was reported that about 353 out of 671 marketed drugs are known to cause liver damage. Only 47% of drugs are reported to negotiate causing hepatotoxicity. There is a large category of therapeutical drugs which are known to cause big threat to the functioning of liver. Diclofenac and Troglitazone are the most common pharmaceutical drug-induced hepatotoxic drugs. Diclofenac is a non steroidal inflammatory drug that form quinine intermediates on binding to the protein and nucleic acid. Oxidative stress is further caused by diclofenac through redox cycling of reacting oxidation species. [9].

There are numerous plants in curing hepatotoxicity, but major problem is the lack of understanding its ability. So to understand the activity of the active components of the plants, a computational technique called docking is performed. This helps in discovering new drugs within a short period of time and of less cost. Docking will help to predict the interactions between the ligand and receptor. The interacted ligand and receptor having more bonds will be the best interacting molecule. Auto dock is the most common docking site that helps in predicting the interaction between the ligand and the receptor[10]. The aim of the docking method is to predict the experimental bonding and affinities of the small molecules with the receptors. This is now mostly used as a computation tool in drug designing. Pose prediction, affinity and virtual screening are the main goals of the docking process. A successful docking will able to explain the binding of the native ligand to the receptor. A search algorithm and scoring are the basic rules in the docking methodology to know the ligand interactions and confirmations[11]. Describing the ligand receptor interaction correctly is major challenge of docking that is useful in prospective drug designing and studies. Binding of ligands to the receptor

and understanding their affinities will help to know the efficient binding of them in drug designing. The binding site of ligand to the protein can be clearly explained by docking technique[12]. The aim of current study is to understand the affinity of active components of Madhucalongifolia to the hepatotoxic receptors.

MATERIALS AND METHOD

In silico analysis on seed, bark and fruit of Madhuca longifolia

Receptors

The five receptors used are Apo Human Pregnane X, Nuclear bile acid receptor FXR, Constitutive and rostane, LXRalpha and Nf-kB receptors. These receptors are activated during hepatotoxicity. The structure of all the receptors was obtained from PDB. The PDB id of the used receptor is mentioned in Table 1.

Receptor	PD

Table 1: Used receptors for molecular docking

S.No.	Receptor	PDB Id.
1	Apo Human Pregnane X Receptor	1ILG
2	Nuclear bile acid receptor FXR	10SH
3	Constitutive androstane receptor	1XNX
4	LXRalpha	5AVI
5	Nf-kB	1NFK

Ligands

About twenty nine compounds were selected from different parts of Madhuca longifolia. The ligands were obtained from seed, bark, fruit and nut shell. The canonical smile of each ligand was obtained from Pubchem which was submitted to corina molecule net to obtain its structure. The characteristics of the ligands used are given in Table 2.

Table 2: Characteristics of the ligand

Molecule Name	Molecule formula	Molecular weight (g/mol)	PubChem compound Id.
Ethylcinnamate	C11H12O2	176.215	637758
Sesquiterine alcohol	C27H46O11	564.654	91754221
α-terpeneol	C10H18O	154.253	17100
α - and β - amyrin acetates	C94H154O5	1364.261	71597151
n-Hexacosanol	C26H54O	382.717	68171
Quercetin	C15H10O7	302.238	5280343
Dihydroquercetin	C15H12O7	304.254	471
β-sitosterol	C29H50O	414.718	222284
Quercitin- 3-glucoside	C20H19O12	463.371	5280804
Icosonoic acid	C20H40O2	312.538	10467
Octadeca 9,12 dienoic acid	C18H32O2	280.452	5280450
Octadec-9-enoic acid	C18H34O2	282.468	445639
Tetradecanoic acid	C14H28O2	228.376	11005
Hexadecanoic acid	C16H32O2	256.430	985
Octadecanoic acid	C18H36O2	284.484	5281

March-April

2019

RJPBCS

10(2)

Page No. 1489

2 amino propanoic acid	C3H7NO2	89.094	5862
4 methyl 2(phenyl methoxy	C14H19NO4	265.309	74840
carbonyl amine) pentanoic			
acid			
2-6 diaminohexanoic acid	C6H14N2O2	146.190	5962
2 amino 4 methyl	C5H11NO2S	149.208	6137
sulfanylbutanoic acid			
Pyrrolidine-2 carboxylic acid	C5H9O2	115.132	145742
2 amino 3 hydroxypropanoic	C3H7NO3	105.093	5951
acid			
2 amino-3 hydroxybutanolic	C4H9NO3	119.120	6288
acid			
3,5,7 trihydroxy -2-(3,4,5	C15H10O8	318.237	5281672
trihydroxyphenyl) chromen-4-			
one			
2(3-4 dihydroxyphenyl)-5,7	C21H20O12	464.379	5280804
dihydroxy-3			
Mi-saponin A	C58H94O27	1223.363	179637
Mi-saponin B	C63H102O31	1355.475	51136518
2 amino butanedoicacid	C4H7NO4	133.103	5960
2 amino-3-[2amino-2carboxy	C6H12N2O4S2	240.292	67678
2 amino acetic acid	C2H5NO2	75.067	750
2 amino 3 methyl pentanoic	C6H13NO2	131.175	6306
acid			

Insilico Docking

Patch dock online server was used for performing insilico docking. The ligands and receptors were submitted to the online server to obtain the docked complex. The images were visualized using PyMol software.

Analysis Of Docked Complex

PyMol software is used for identifying the interaction between the ligands and receptors. The interactions were identifies along with its bond length, Area, Score and ACE. The atoms in the ligands and amino acid residues in the receptors were labeled.

Invitro analysis of the Madhuca longifolia oil

Preparation of extract

Commercially available Madhuca longifolia seed oil was purchased from Tamil Traders Pvt. Ltd, Coimbatore, Tamil Nadu, India. For the preparation of extract the oil was subjected to serial dilution in the ratio 1, 1:2, 1:4, 1:8, 1:16 and 1:32. Group A consist of oil only, group B consist of oil with the dilution of 1:2, group C consist of oil with the dilution 1:4, group D consist of oil with dilution 1:8, group E consist of oil with dilution 1:16, group F consist of oil with dilution 1:32.

DPPH Assay

In DPPH Assay 1ml of extract was mixed with 0.5ml of DPPH(0.2mM) and the absorbance was measured at 520nm against blank which consisted of distilled water and DPPH.

Catalase Test

In Catalase test, 1ml of hydrogen peroxidase and 1ml of 0.01M phosphate buffer saline of pH 7.5 is mixed with 1 ml of extract and its absorbance is measured at 240nm against blank consisting of distilled water , hydrogen peroxide and phosphate buffer saline.

Peroxidase Test

In, Peroxidase test 0.5ml of extract is mixed with 1.5ml of pyrogallol to which 0.5ml of hydrogen peroxide is added. Absorbance for every 30 seconds till 3 minute is measured at 430nm against blank consisting of distilled water, pyrogallol and hydrogen peroxide.

Total Phenolic Content

In total phenolic content 1ml of extract is mixed with 1ml of sodium carbonate and 1 ml of folin reagent and the absorbance is measured at 763nm against blank consisting of distilled water, folin reagent and sodium carbonate.

RESULTS

In silico analysis on seed, bark and fruit of Madhuca longifolia

Interaction of ligands With 1ILG Complex

The interaction of the receptor 1ILG with the ligands hasshowed hydrogen bond which is represented in Table 3. The ligands like Aspartic acid, Cystine, Glycine, Leucine, MiSaponin A, MiSaponin B, Myricetin, Myristicacid, Oleic acid, Quercetin, Serine, Threonine, Sesquiterene alcohol, Dihydroquercetin, Quercetin-3glucoside has showed potential interaction with the docked complex of 1ILG. The Score, Area, ACE and bonds of the docked complex with 1ILG is given in Table 3.

Table 3: Score, Area, ACE and bonds of the docked complex with 110	Table 3: Score,	, Area, ACE and	l bonds of the docked	complex with 1ILG
--	-----------------	-----------------	-----------------------	-------------------

Ligand	Score	Area	ACE	Bonds		
				Residue	Atom	Length
Alpha alanine	1976	208.90	-77.73	NIL		
Arachidonic acid	4544	672.60	-295.44	NIL		
Aspartic acid	2144	232.90	-80.43	SER-247	05	2.9
				SER-247	04	2.5
Cystine	3490	390.00	-182.74	GLU-321	H20	2.3
Glycine	1850	192.40	-67.24	LEU-206	H8	1.8
Isoleucine	2706	292.00	-81.51	NIL		
Leucine	4562	467.90	-114.84	GLN-285	08	3.6
Linoelic acid	4598	572.20	-256.41	NIL		
Lysine	2872	317.70	-91.74	NIL		
Methionine	2694	289.60	-112.41	NIL		
Misaponin A	7422	1378.0	-715.13	GLN-285	062	2.9
		0		ASP-310	015	3.1
				SER-208	034	2.3
				SER-247	072	2.5
				ALA-312	Н	2.8
				GLY-314	O84	3.1
				LEU-209	Н	1.2
				LEU-209	034	1.4
Misaponin B	8888	1226.3	-522.73	PRO-175	Н	1.2
		0		PHE-172	Н	3.3

March-April

2019

RJPBCS

10(2)

Page No. 1491

				THR-165	O93	2.8
				CYS-301	Н	2.4
				ARG-303	016	3.5
				ARG-303	015	1.7
				ARG-303	091	2.3
				ARG-303	08	2.2
				ARG-303	092	3.3
Myricetin	4836	481.00	-139.16	SER-208	H26	2.6
				ARG-410	07	2.1
				SER-247	021	2.8
				MET-243	H31	2.5
Myristic acid	4246	457.30	-188.05	GLU-295	H44	1.9
Oleic cid	5020	626.20	-230.13	HIS-407	019	2.4
Palmitic acid	4146	506.60	-200.13	NIL		
Proline	2216	236.70	-127.48	NIL		
Quercetin	4126	470.20	-165.73	HIS-407	017	3.5
				SER-247	020	3.1
Serine	1984	217.20	-97.37	LYS-210	04	3.4
Stearic acid	4634	514.50	-223.11	NIL		
Threonine	2178	240.10	-72.35	ASP-205	H14	2.9
Alpha amyrin acetate	5864	737.20	-279.19	NIL		
Alpha terpeneol	3306	373.20	-102.21	NIL		
Ethylcinnmate	3572	390.10	-96.28	NIL		
Sesquiterene alcohol	6272	797.40	-201.05	LEU-209	H73	2.1
				ARG-410	029	1.9
				ARG-410	027	2.9
				SER-208	C26	1.9
Beta sitosterol	6256	736.30	-244.87	NIL		
Dihydroquercetin	4360	461.00	-108.84	SER-208	H30	2.8
				HIS-407	010	2.3
				GLN-285	H32	2.4
				GLN-285	020	3.3
1-hexacosanol	5734	657.90	-271.84	NIL		
Quercetin -3-glucoside	5640	622.70	-168.50	HIS-407	010	2.4
				SER-208	H39	2.5
				GLN-285	026	3.4
				SER-247	H50	3.0

The 1ILG receptor showed greater hydrogen bond interaction with MiSaponin A and MiSaponin B(Fig 1). The amino acid residues and their corresponding bond length in MiSaponin A are GLN285 -2.9, ASP310-3.1, SER208-2.3, SER247-2.5, GLY314-3.1, ALA312-2.8, LEU209-1.2, LEU209-1.4 and in MiSaponin B are PR0175-1.2, PHE172-3.3, THR165-2.8, CYS301-2.4, ARG303-3.5, ARG303-3.5, ARG303-1.7, ARG303-2.2, ARG303-2.3, ARG303-3.3.

FIG 1 a. DOCKED COMPLEX OF 1ILG WITH MI SAPONIN A
b. DOCKED COMPLEX OF 1ILF WITH MI SAPONIN B

Fig 1: Docked complex of ILG with MiSaponin A and MiSaponin B

Docked complex of Receptor (Blue) and Ligand (Pink) with bonding (Yellow); b. Docked complex of receptor(Green) and Ligand(Red) with bonding(Yellow)

Interaction Of Ligands With 10SH Complex

The interaction of the receptor 1OSH with the ligands has showed hydrogen bond that is given in Table 4. The ligands like Alpha alanine, Cystine, Isoleucine, Methionine, MiSaponin A, MiSaponin B, Myricetin, Quercetin, Serine, Alpha amyrin acetate, Alpha terpeneol, Beta sitosterol and Dihydoquercetinhas shown potential interaction with the docked complex of 1OSH. The Score, Area, ACE and bonds of the docked complex withn1 OSH is given in Table 4.

Ligand	Score	Area	ACE	Bonds			
				Residue	Atom	Lengt	:h
Alpha Alanine	2108	222.30	-93.83	THR-292	04	3.5	
Arachidonic Acid	5044	59940	-192.70	NIL			
Aspartic Acid	2344	266.60	-115.53	NIL			
Cystine	3588	399.20	-248.59	TYR 365	012	2.1	
					H26	2.5	
Glycine	1766	198.9	-78.58	NIL			
Isoleucine	2746	293.90	-106.12	LEU 291	H20	1.8	
				ALA 295	08	3.0	
Leucine	4658	521.40	-210.14	SER 336	08	3.0	
Linoelic Acid	5764	676.20	-234.07	NIL			
Lysine	3098	331.60	-147.09	NIL			
Methionine	2906	305.20	-168.98	LEU 291	H19		2.0
MiSaponin A	7670	1134	-488.73	HIS 348	Н		2.6
MiSaponin B	8014	920.80	11.23	ASP 398	Н		1.8
				GLN 400	Н		3.3
				HIS 449	Н		3.3
				TYR 401	089		3.1
				GLU 471	Н		2.9
				GLU 471	032		3
				GLU 471	032		3.2
				TYR 365	H26		2.4
Myricetin	4464	500.90	-185.54	LEU 291	H28		2.1
				TYR 365	H26		2.4
				SER 336	H33		3.4

Table 4: Score, Area, ACE and bonds of the docked complex with 1OSH

				TYR 373	013	2.8
				TYR 373	013	1.9
Myristic Acid	4370	521.0	-195.93	NIL		
Olenic Acid	5994	695.90	-253.39	NIL		
Palmitic Acid	4586	550.80	-217.71	NIL		
Proline	2364	271.30	-118.10	NIL		
Quercetin	5702	637.10	-368.63	THR 292	021	3.6
				HIS298	019	3.4
Serine	2158	231.40	-100.87	THR 292	07	2.8
Stearic Acid	4734	594.0	-222.32	NIL	•	
Threonine	2352	263.80	-114.86	NIL		
Alpha Amyrin Acetate	5932	761.80	-322.89	TYR 365	O26	3.5
Alpha Terpeneol	3276	360.80	-171.62	TYR365	011	2.9
Ethylcinnmate	3878	433.20	-161.40	NIL		
Sesquiterene Alcohol	6190	752.90	-298.57	NIL		
Beta Sitosterol	5862	714.70	-273.51	TYR 365	H67	3.5
Dihydroquercetin	4464	495.20	-214.94	TYR 373	019	2.3
				TYR 373	010	3.0
1 Hexocosanol	5672	732.70	-97.72	NIL		
Quercetin -3-Glucoside	5598	642.0	-276.52	NIL		

The 1OSH receptor showed greater hydrogen bond interaction with MiSaponin B and Myricetin (Fig 2). The amino acid and corresponding bond length in MiSaponin B are GLN100-3.3, HIS449-3.3, TYR401-3.1, GLU471-2.9, GLU471-3, GLU471-3.2, TYR365-2.4 and in Myricetin are LEU291-2.1, TYR365-2.4, SER336-3.4, TYR373-2.8 and TYR373-1.9.

FIG 2 a. DOCKED COMPLEX OF 10SH WITH MI SAPONIN B

Docked complex of Receptor (Violet) and Ligand (Red) with bonding (Yellow)

Fig 2: Docked complex of 1OSH with MiSaponin B and Myricetin

Interaction Of Ligands With 1XNX Complex

The interaction of receptor 1XNX with the ligands has showed hydrogen bond that is represented in Table 5. The ligands like Alpha alanine, Aspartic acid, Cystine, Glycine, Isoleucine, Linoleic acid, Lysine, Methionine, MiSaponin A, MiSaponin B, Myricetin, Oleic acid, Proline, Quercetin, Serine, Steric acid, Threonine, Sesquiterene alcohol, Dihydroquercetin and Quercetin-3-Glucoside has showed potential interaction with the docked complex of 1XNX.the Score, Area, ACE and bonds of the docked complex with 1XNX is given in Table 5.

Ligand	Score	Area	ACE	Bonds		
				Residue	Atom	Length
Alpha alanine	1986	220.80	-51.74	ASP-238	H11	2.6
				ARG-156	04	3.0
				PRO-157	H12	2.3
Arachidonic acid	5402	632.00	-187.98	NIL		
Aspartic acid	2478	265.20	-67.31	GLN-159	09	2.5
				ARG-156	05	2.9
				GLN-159	H14	2.2
Cystine	3406	360.20	-201.81	ASN-175	H24	3.6
				ASN-175	012	3.4
Glycine	1634	184.90	-42.77	ARG-156	04	3.5
Isoleucine	2828	296.10	-119.06	SER-315	H22	1.9
				SER-315	08	1.9
Leucine	4538	521.90	-200.57	NIL		
Linoleic acid	4456	492.20	-165.31	ASN-258	020	2.7
				ASN-258	019	1.9
Lysine	2812	308.20	-87.94	ASP-238	H22	2.3
				ARG-156	O9	3.4
				GLN-159	H23	2.1
				GLN-159	08	3.5
Methionine	2828	309.20	-133.22	SER-315	H20	2.2
				GLY-261	H19	2.2
				GLN-314	08	2.7
Misaponin A	8464	1024.4	-173.57	ASN-258	010	3.1
		0		LYS-260	O80	3.2
				ASP-140	Н	1.8
				LYS-257	023	2.3
Misaponin B	8490	1014.2	-202.82	SER-311	081	2.8
		0		ASN-226	Н	2.9
				THR-224	Н	2.1
				GLN-223	031	3.3
				GLN-223	028	2.9
				GLN-223	023	3.0
				GLN-223	033	1.7
				HIS-155	Н	1.7
Myricetin	4194	434.80	-194.17	ASN-175	021	2.2
Nyristic acid	4216	433.50	-1/4.50	NIL	010	2.5
Dielc acid	5186	598.50	-148.89	GLU-266	019	3.5
	4260	475.90	-195.76	NIL		24
Proline	2356	257.00	-90.39	PRO-157	H14	2.1
				GLN-159	07	3.3
Quercetin	4054	448.00	-179.77	GLY-261	H31	1.5
				SER-315	020	3.1
				GLN-314	010	3.1
				ARG-312	010	2.2
				GLN-314	019	3.5
Carina	2100	226.00	61.04	SEK-315	017	3.1
Serine Staaria a id	2190	230.00	-01.04	GLIN-159	<u>п12</u>	2.3
Stearic acid	5018	580.80	-1/8.80	GLY-354	020	2.5

Table 5: Score, Area, ACE and bonds of the docked complex with 1XNX

Threonine	2446	260.40	-56.65	PRO-157	H17	2.2
				ARG-156	08	3.4
				ARG-156	O6	3.0
				HIS-241	H15	2.3
Alpha amyrin acetate	5676	744.70	-374.80	NIL		
Alpha terpeneol	3276	341.40	-137.88	NIL		
Ethylcinnmate	3538	434.30	-133.37	NIL		
Sesquiterene alcohol	5898	796.00	-398.39	LEU-340	H71	2.1
				ASN-175	O30	2.2
Beta sitosterol	5190	661.70	-206.49	NIL		
Dihydroquercetin	4130	442.70	-179.20	LYS-235	H33	2.3
				ALA-239	021	3.3
				ASN-175	019	2.2
1-hexacosanol	5908	686.00	-183.87	NIL	•	
Querectin-3-glucoside	5420	624.40	-278.98	LYS-235	H49	2.7

The receptor 1XNX showed greater hydrogen bond interaction with MiSaponin B and Quercetin (Fig 3). The amino acid and corresponding bond length in MiSaponin B are SER311-2.8, ASN226-2.9, THR224-2.1, GLN223-3.3, GLN223-2.9, GLN223-3.0, GLN223-1.7, HIS155-1.7 and in Quercetin are GLY261-1.5, SER315-3.1, GLN314-3.1, ARG312-2.2, GLN314-3.5 and SER315-3.1.

FIG 3 a. DOCKED COMPLEX OF 1XNX WITH MI SAPONIN B b. DOCKED COMPLEX OF 1XNX WITH QUERCETIN

Fig 3: Docked complex of XNX with MiSaponin B and Quercetin

Docked complex of Receptor (Pink) and Ligand (Blue) with bonding (Yellow); b.Docked complex of receptor(Red) and Ligand(Pink) with bonding(Yellow)

Interaction Of Ligands With 5AVI Complex

The interaction between receptor 5AVI and the ligands has showed the hydrogen bond which is mentioned in Table 6. The ligands like Alpha alanine, Aspartic acis, Cystine, Glycine, Lysine, Methionine, MiSaponin A, MiSaponin B, Myricetin, Palmitic acid, Proline, Quercetin, Serine, Threonine, Alpha terpeneol, Sesquiterene alcohol, Dihydroquercetin and Quercetin-3-Glucoside has showed potential interaction with the docked complex of 5AVI. The Score, Area, ACE and bonds of the docked complex with 5AVI is given in Table 6.

Table 6: Score,	Area, ACI	E and bonds	of the docked	d complex with 5AVI
			•••••••••••••••••••••••••••••••••••••••	

Ligand	Score	Area	ACE	Bonds		
				Residue	Atom	Length
Alpha alanine	2136	224.40	-11.69	GLY 382	H13	2.2

				LYS 410	04	3.1	
Arachidonic acid	5932	710.80	-190.65	NIL			
Aspartic acid	2498	275.50	1.61	ARG 415	05	3.4	
				1YS 410	09	3.2	
				GLU 379	H15	2.6	
Cystine	3832	435 90	-53 49	GLU 379	H26	1.6	
cystille	5052	433.50	55.45	MET 409	H20	2.5	
				SER /13	H20	2.5	
				GLN 282	H120	2.4	
				ALA 367	05	2.0	
Glycino	1700	102.20	12.05	ALA 307	01	2.3	
Giyenie	1/90	192.50	-13.65	ACD 269	04 Ц0	3.2	
Isolousino	2720	205.00	100.00	ASF 506	По	2.0	
	2720	293.90	-100.99				
Leucine	4918	514.20	-195.84	NIL			
	5578	636.00	-169.72	NIL CLN 202	00	2.5	
Lysine	3260	359.50	-19.50	GLN 382	09	3.5	
Methionine	3122	349.20	-42.46	GLU 379	H20	2.3	
Misaponin A	8856	1333.7	-452.82	SER 419	Н	2.2	
		0		THR 416	Н	2.2	
				SER 422	034	3.2	
				PRO 370	Н	2.8	
				GLN 375	083	3.1	
				GLN 375	Н	1.8	
Misaponin B	9946	1431.7	-308.13	THR 302	O68	2.8	
		0		ARG 305	041	2.9	
				ARG 305	019	2.7	
				ASP 353	Н	2.5	
				GLN 222	O93	2.6	
				GLN 222	Н	1.3	
Myricetin	4566	488.70	-229.66	SER 264	07	3.2	
Myristic acid	4952	597.20	-88.71	NIL			
Oleic acid	5698	624.40	-166.35	NIL			
Palmitic acid	5362	591.00	-135.40	LYS 317	017	3.4	
				LYS 317	017	3.2	
				ARG 305	018	1.5	
Proline	2454	276.30	-12.90	LYS 410	07	3.1	
Quercetin	4588	545.60	27.11	GLU 348	H28	2.4	
				GLN 375	H29	2.1	
				GLN 375	H29	2.4	
				ARG 344	019	2.4	
				GLN 375	O10	3	
				GLU 341	O10	2.1	
				ASP 368	021	3.1	
				ASP 367	021	3.3	
Serine	2252	228.10	-11.03	GLU 379	H11	2.5	
				LYS 410	04	2.6	
				ARG 415	07	33	
				MFT 409	H13	2.3	
Staeric acid	5514	620.20	-168 89	NII 2.3			
Threonine	2484	274 70	-2.05	GLU 379	H15	2.1	
	2.04		2.00	LYS 410	06	29	
				SFR 413	08	2.5	
Alpha amyrin acetate	6420	775 50	-386.83	NII	00	2.2	
	0420	115.50	-200.02				

Alpha terpeneol	3464	386.20	-27.75	MET 409	H29	2.0
				SER 413	011	2.6
Ethylcinnmate	3892	456.10	-17.14	NIL		
Sesquiterene alcohol	5976	756.90	-126.91	THR 302	H71	2.8
				MET 298	H71	2.2
				SER 264	H77	2.6
				SER 264	033	2.1
Beta sitosterol	6216	758.30.	-371.17	NIL		
Dihydroquercetin	4670	483.80	-230.99	THR 302	021	3
				THR 302	023	1.2
1-hexacosanol	6418	826.10	-131.01	NIL		
Quercetin-3-glucoside	5702	637.10	-368.63	HIS 421	010	2.7
				HIS 421	019	3.4
				ILE 295	H50	2.4
				THR 302	029	3.2

The receptor 5AVI showed greater hydrogen bond interaction with Cystine, MiSaponin A, MiSaponin B and Quercetin (Fig 4). The amino acid residues and bond length in Cystine are GLY379-1.6, MET409-2.5, SER413-2.4, GLN382-3.3, ALA367-2.9; in MiSaponin A are SER419-2.2, THR416-2.2, SER422-3.2, PRO370-2.8, GLN375-3.1, GLN375-1.8; in MiSaponin A are THR302-2.8, ARG305-2.9, ARG305-2.7, ASP353-2.5, GLN222-2.6, GLN222-1.3; in Quercetin are GLU348-2.4, GLN375-2.1, GLN375-2.4, GLN375-3.0, ARG344-2.4, GLY341-2.1, ASP368-3.1 and ASP367-3.3.

Fig 4: Docked complex of 5AVI with (a) Cystine, (b) MiSaponin A, (c) MiSaponin B and (d) Quercetin

Docked complex of Receptor (Red) and Ligand (Blue) with bonding (Yellow); b.Docked complex of receptor(Red) and Ligand(Pink) with bonding(Yellow); c. Docked complex of Receptor (Red) and Ligand (Blue) with bonding (Yellow); d. Docked complex of Receptor (Blue) and Ligand (Pink) with bonding (Yellow)

Interaction Of Ligands With 1NFK Complex

The interaction of receptor 1NFK with the ligands has showed hydrogen bond interaction that is represented in Table 7. The ligands like Arachidonic acid, Cystine, Isoleucine, Leucine, Lysine, Methionine, MiSaponin A, MiSaponin B, Myricetin, Oleic acid, Palmitic acid, Quercetin, Serine, Threonine, Alpha terpeneol, Sesquiterene alcohol, Beta sitosterol, Dihydroquercetin, 1-Hexacosanol, Quercetin-3-glucodise and Stearic acid has showed potential interaction with the docked complex of 1NFK. The Score, Area, ACE and bonds of the docked complex with 1NFK is given in Table 7.

Ligand	Score	Area	ACE	Bonds		
U				Residue	Atom	Length
Alpha Alanine	2154	233.10	-55.65	NIL		
Arachidonic Acid	5560	699.70	-128.46	ARG-305	021	2.7
				DA-5	H54	2.4
				DA-5	022	1.4
				ARG-305	021	2.0
Aspartic Acid	2480	293.20	-46.63	NIL		
Cystine	3508	420.70	-194.19	CYS-145	013	2.7
				CYS-145	012	2.1
				DT-8	H25	2.3
Glycine	1782	194	-40.35	DC-9	H8	2.5
Isoleucine	2966	325.70	-79.65	LYS-272	H20	2.4
				GLN-306	08	2.1
Leucine	5130	550.70	-92.40	ARG-305	012	2.8
				DA-5	011	2.0
				DA-5	011	2.7
				LYS-272	02	2.6
				DA-6	H30	2.6
Linoelic Acid	5042	603.42	-131.85	NIL		•
Lysine	5130	550.70	-92.40	HIS-141	O9	2.8
Methionine	2902	338.80	-152.38	DT-8	H20	2.6
				DT-8	H20	2.4
				LYS-145	07	1.4
MiSaponin A	9492	1328.1	-167.76	ASN-247	083	2.6
				ASN-247	Н	2.1
				LYS-74	024	2.3
				LYS-74	Н	2.3
				LYS-74	Н	1.4
				LYS-76	071	2.0
				LYS-76	075	0.7
MiSaponin B	8868	1363.4	-112.78	SER-246	071	2.4
				ASN-247	Н	2.1
				LYS-241	O83	1.3
				LYS-272	081	1.2
				LYS-272	082	1.6
				DG-2	Н	2.6
				LYS-74	033	2.2
				GLU-73	Н	1.1
				GLU-73	Н	2.5
				LYS-76	093	1.9

Table 7: Score, Area, ACE and bonds of the docked complex with 1NFK

March-April

Myricetin	4352	494.60	11.4	LYS-272	022	2.2
				ARG-305	023	15
				LYS-249	08	2.7
				LYS-249	07	1.7
Myristic Acid	4750	5576	-158.63	NIL		
Oleic Acid	5420	665.3	-303.59	DG-3	019	2.8
Palmitic Acid	5088	602.50	-76.73	ARG-305	018	2.7
				DA-5	018	2.5
Proline	2478	281.3	-53.80	NIL		
Quercetin	4346	539.20	-127.07	DT-8	H31	2.8
				LYS-145	020	2.2
Serine	2200	236.30	-58.54	DT-8	H14	2.2
				TYR-57	07	2.7
Threonine	2452	275.50	-63.28	DA-6	06	2.4
				DA-5	H14	2.3
				LYS-272	06	2.7
Alpha Amyrin Acetate	6316	783.00	-61.88	NIL		
Alpha Terpenol	3558	413.10	-68.76	LYS-145	011	2.1
Ethyl Cinnamate	3930	452.30	-130.93	NIL		
Sesquiterene Alcohol	6826	860.40	-41.63	SER-240	034	2.5
				ARG-54	035	2.6
				SER-240	027	2.8
				ARG-305	032	2.3
Beta Setosterol	5976	761.00	-102.38	DA-5	025	2.4
				LYS-272	025	1.2
DehydroQuercetin	4338	511.80	-83.27	LYS-145	022	2.5
				LYS-145	021	2.0
				DT-8	H32	2.0
1-Hexocosanol	7306	877.80	-123.28	LYS-241	027	2.3
Quercetin- 3-	5630	648.40	33.10	SER-240	033	3.1
Glucoside				ARG-247	032	2.4
				ARG-247	H48	2.5
				DA-5	O30	2.2
				DG-4	H50	2.7
				ASP-271	C9	3.1
				ARG-305	010	0.5
				DG-4	H40	2.3
				LYS-249	018	1.3
Stearic Acid	5748	676.40	-106.62	LYS-272	019	2.8
				LYS-241	020	2.1

The receptor showed greater interaction with Leucine, MiSaponin A, MiSaponin B and Quercetin-3-glucoside (Fig 5). The amino acid residues and the bond length in Leucine are ARG305-2.8, DA5-2.0, DA5-2.7, LYS272-2.6, DA6-2.6; in MiSaponin A are ASN247-2.6, ASN247-2.1, LYS74-2.3, LYS74-2.3, LYS74-1.4, LYS76-2.0. LYS76-0.7; in MiSaponin B are SER246-2.4, ASN247-2.1, LYS241-1.3, LYS272-1.2, DG2-2.6, LYS272-1.6, LYS74-2.2, GLU73-1.1, GLU73-2.5, LYS76-1.9; in Quercetin-3-glucoside are SER240-3.1, ARG247-2.4, ARG247-2.5, DA5-2.2. DG4-2.7, ASP271-3.1, ARG305-0.5, DG4-2.3 and LYS249-1.3.

March-April

2019

RJPBCS

Fig 5: a. DOCKED COMPLEX OF 1NFK WITH QUERCETIN 3 GLUCOSIDE b. DOCKED COMPLEX OF 1NFK WITH LEUCINE

Fig 5: Docked complex of 1NFK with (a) Quercetin-3-glucoside, (b) leucine, (c) MiSaponin A and (d) MiSaponin B

Docked complex of Receptor (Blue) and Ligand (all colours) with bonding (Yellow); b. Docked complex of receptor(Violet) and Ligand(Red) with bonding(Yellow); c. Docked complex of Receptor (Red) and Ligand (Green) with bonding(Yellow); d. Docked Complex of Receptor (Red) and Ligand (Blue) with bonding (Yellow)

Invitro analysis of the Madhuca longifolia oil

Potential activity of Madhucalongifolia oil in Dpph Assay

In this assay (Fig 6), Group A showed 1.74% inhibition which shows that it has better potential effect. The graph shows decrease in the % inhibition as increase in the ratio of extract. The ratio of the extract is directly proportional to activity assay.

Fig 6: Potential activity of Madhuca longifolia oil on DPPH assay

Each value represents the mean \pm SD of six rats. Comparisons were made as follows: a-Group-Avs groups B, C, D, E, F; b- Group-B vs Group-C, D, E, F; c-Group-C vs Group-D, E, F; d-Group-D vs Group-E, F; Group-E vs Group-F. The symbols represent statistical significance at *p < 0.05. Statistical analysis was calculated by one-way ANOVA followed by the Student Newman–Keul's test.

Potential activity of Madhuca longifolia oil inCatalase Test

In this assay (Fig 7), group A consisting of oil showed high catalase activity than other groups. Group A showed 0.577±0.014. There is a sharp decrease in the catalase activity as increase in dilution of the extract

Fig 7: Potential activity of Madhuca longifolia oil on catalase assay

Each value represents the mean \pm SD of six rats. Comparisons were made as follows: a-Group-Avs groups B, C, D, E, F; b- Group-B vs Group-C, D, E, F; c-Group-C vs Group-D, E, F; d-Group-D vs Group-E, F; Group-E vs Group-F. The symbols represent statistical significance at *p < 0.05. Statistical analysis was calculated by one-way ANOVA followed by the Student Newman–Keul's test.

Potential activity of Madhuca longifolia oil inPeroxidase Test

In this study (Fig 8), group A showed peroxidase activity of 0.834±0.007 which is maximum among other groups. The graph shows decrease in the peroxidase activity with increase in dilution of extract.

Fig 8: Potential activity of Madhuca longifolia oil on Peroxidase assay

Each value represents the mean \pm SD of six rats. Comparisons were made as follows: a-Group-Avs groups B, C, D, E, F; b- Group-B vs Group-C, D, E, F; c-Group-C vs Group-D, E, F; d-Group-D vs Group-E, F; Group-E vs Group-F. The symbols represent statistical significance at *p < 0.05. Statistical analysis was calculated by one-way ANOVA followed by the Student Newman–Keul's test.

Potential activity of Madhuca longifolia oil inTotal Phenolic Content

In this study (Fig 9), the total phenolic content of group A is 2.613±0.039; of group B is 1.492±0.004; of group C is1.403±0.004; of group D is 1.205±0.003; of group E is 1.151±0.006; of group F is 1.138±0.002. The graph shows decrease in total phenolic content with increase in dilution of extract.

Fig 9: Potential activity of Madhuca longifolia oil on total phenolic content

Each value represents the mean ± SD of six rats. Statistical analysis was calculated by one-way ANOVA followed by the Student Newman–Keul's test.

DISCUSSION

Madhuca longifolia has been proved to have an effective protectiveness against hepatotoxicity. The receptors that get activated during hepatotoxicity like 1ILG, 1OSH, 1XNX, 5AVI and 1NFK were docked with the ligands from the M.longifolia that has shown a potential interaction which predicts the beneficial effect M.longifolia in treating hepatotoxicity. The receptors that when activated causes hepatotoxicity that showed high interaction with the ligands on the M.longifolia[13]. The ligands that showed high interaction with all the receptors is MiSaponin B which has a high hydrogen bonding and high oxygen interaction followed by MiSaponin A, Myricetin, Quercetin, Leucine and Cystine. The activation of 1OSH suppresses autophagy and causes defects in metabolic targets outside of bile[14].These nuclear receptors function to detect the presence of toxic foreign substance and regulate the proteins involved in detoxification. Thus to conclude MiSaponin B can be used preferentially as the main ligand from M.longifolia for treating hepatotoxicity by their good interactions with the receptors which get activated during hepatic diseases. Saponin is a natural amphile that is used as an adjuvant for drug delivery which consist of hydrophobic aglycone and hydrophilic glycine[15]. Saponin is reported to have beneficial effect as anti-apoptosis, angiogenic and antioxidant activity[16–18].

The in vitro assay of the oil of Madhuca longifolia has showed its beneficial activity which demonstrates its antioxidant activities. During chemical reactions some free radical are produced in the form of reactive oxygen species. The accumulation of this reactive oxygen species will cause oxidative stress in the system by the formation of toxic metabolites from these free radicals. Naturally these free radicals are scavenged by the antioxidant enzyme present in the body [19]. The antioxidant enzyme like catalase will degrade the free radicals hydrogen peroxidase by converting them into non-toxic compound like water and

2019

RJPBCS 10(2)

oxygen [20]. The peroxidase will also degrade the hydrogen peroxidase and detoxify the toxic metabolites [21]. DPPH will help in enhancing the antioxidant properties [22]. In our result the oil alone has showed potential result than the serial dilution. Our result demonstrates the activity of the oil of Madhuca longifolia as antioxidant agent.

CONCLUSION

Hepatotoxicity is a chemical driven liver disorder. The current study was done to know the inhibitory activity of the ligands towards the receptors that causes hepatotoxicity. The hepato inhibitory activity of the active components of Madhucalongifolia was taken for the study. Docking was performed to know the interactions between the ligand and the receptor. From the present study, the docked complex of MiSaponin B had shown the maximum affinity toward the receptor than any other ligands. It had shown maximum greater hydrogen bond interaction with the receptor. MiSaponin B binds to the receptor and thus prevents the binding of the hepatotoxic chemical to the receptor and thus prevents hepatotoxicity. So our present study concludes that MiSaponin B has higher effectiveness in the treatment of hepatotoxicity and the in vitro activity demonstrated the antixodant activity of the oil of Madhuca longifolia. This can then be further experimented through in vivo models and can be studied by gene expression studies.

ACKNOWLEDGMENT

We would like to thank VIT for giving us the opportunity to work and giving us all the necessary resources to successfully carry out this work.

REFERENCES

- [1] Nam J-S, Jagga S, Sharma AR, Lee J-H, Park JB, Jung J-S, et al. Anti-inflammatory effects of traditional mixed extract of medicinal herbs (MEMH) on monosodium urate crystal-induced gouty arthritis. Chin. J. Nat. Med., 2017;15:561–75.
- [2] Yadav P, Singh D, Mallik A, Nayak S. Madhucalongifolia (Sapotaceae), a review of its traditional uses, phytochemistry and pharmacology. Int. J. Biomed. Res., 2012;3:291–305.
- [3] Ramadan MF, Mohdaly AAA, Assiri AMA, Tadros M, Niemeyer B. Functional characteristics, nutritional value and industrial applications of Madhucalongifolia seeds: an overview. J. Food Sci. Technol., 2016;53:2149–57.
- [4] Sinha J, Singh V, Singh J, Ak R. Phytochemistry, Ethnomedical Uses and Future Prospects of Mahua (Madhucalongifolia) as a Food: A Review. J. Nutr. Food Sci., 2017;07.
- [5] Ghosh R, Dhande I, Kakade VM, Vohra RR, Kadam VJ, Mehra. Antihyperglycemic activity of Madhucalongifolia in alloxan -induced diabetic rats. Internet J. Pharmacol., 2008;6.
- [6] Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity.Toxicol. Sci. Off. J. Soc. Toxicol., 2002;65:166–76.
- [7] Drug-Induced Hepatotoxicity: Overview, Metabolism of Drugs, Clinical and Pathological Manifestations of Drug-Induced Liver Disease. 2017;
- [8] Björnsson ES. Hepatotoxicity by Drugs: The Most Common Implicated Agents. Int. J. Mol. Sci., 2016;17.
- [9] Guedes IA, Magalhães CS de, Dardenne LE. Receptor-ligand molecular docking.Biophys. Rev., 2014;6:75–87.
- [10] Valerio LG. In silico toxicology for the pharmaceutical sciences. Toxicol. Appl. Pharmacol., 2009;241:356– 70.
- [11] Beware of docking! Trends Pharmacol. Sci., 2015;36:78–95.
- [12] Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational Methods in Drug Discovery.Pharmacol. Rev., 2014;66:334–95.
- [13] Odili VU, Akpe AI, Arigbe-Osula ME, Igbinaduwa PO, others. Antioxidant and hepatoprotective activity of Madhucalongifolia (koenig) bark against CCl4-induced hepatic injury in rats: in vitro and in vivo studies. Res. J. Pharm. Biol. Chem. Sci., 2010;1:1–10.
- [14] Gomez-Ospina N, Potter CJ, Xiao R, Manickam K, Kim M-S, Kim KH, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun., 2016;7:10713.
- [15] Simeonova R, Vitcheva V, Krasteva I, Zdraveva P, Konstantinov S, Ionkova I. Antidiabetic and antioxidant effects of saponarin from Gypsophila trichotoma on streptozotocin-induced diabetic normotensive and hypertensive rats. Phytomedicine, 2016;23:483–90.

March-April

2019

RJPBCS

10(2) Page No. 1504

- [16] Gaikwad RD, Ahmed ML, Khalid MS, Swamy P. Anti-inflammatory activity of Madhucalongifolia seed saponin mixture. Pharm. Biol., 2009;47:592–7.
- [17] Jyothi KS, Seshagiri M. In-vitro activity of saponins of bauhinia purpurea, madhucalongifolia, celastruspaniculatus and semecarpusanacardium on selected oral pathogens. J. Dent. Tehran Univ. Med. Sci., 2012;9:216–23.
- [18] Lalitha T, Seshadri R, Venkataraman LV. Isolation and properties of saponins from Madhucabutyracea seeds. J. Agric. Food Chem., 1987;35:744–8.
- [19] Gomaa AMS, Abd El-Mottaleb NA, Aamer HA. Antioxidant and anti-inflammatory activities of alpha lipoic acid protect against indomethacin-induced gastric ulcer in rats. Biomed.Pharmacother., 2018;101:188–94.
- [20] Siddhuraju P, Manian S. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotylomauniflorum (Lam.) Verdc.) seeds. Food Chem., 2007;105:950–8.
- [21] McGowan MW, Artiss JD, Strandbergh DR, Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides.Clin. Chem., 1983;29:538–42.
- [22] Leaves L. Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides. Am. J. Ethnomedicine, 2014;1:244–9.