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ABSTRACT 

 
In this paper we have utilize fast 3D gravity inversion( a certain iterative procedure known as Lanczos 

bidiagonalization )technique that is able rapidly recovering 3D density distributions extracted from measured 
gravity anomalies. , the new method was applied to real gravity data obtained from the Obama geothermal 
field .Our 3D model shows the shape of the anomaly source in the study area. The deduced model of 
substratum agrees well with previous geological studies. 
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INTRODUCTION 
 
 Inversion is in fact described right here is considered an automated numeral processes utilized build a 
model of about subsurface physical property(density) variations by using measured data and all of the prior 
important information independent of about measured data. Quantitative interpretation will be performed by 
drawing geologic interpretations from the original and inverted models. A model is in fact which is 
parameterized to explain the source geometry or is described using a distribution of a new physical property, 
for instance density or magnetic susceptibility contrast. [1]. 
 
 The main goal of this paper is to utilize fast 3D gravity inversion technique that is able rapidly 
recovering 3D density distributions extracted from measured gravity anomalies. To achieve this, the survey 
area is divided right into a large number of rectangular prisms within a network which have uncertain densities. 
To realize that goal, a certain iterative procedure known as Lanczos bidiagonalization is utilized.  
 

The Lanczos bidiagonalization regularization algorithm appeared to be suggested by [2-3] to use on 
the simplistic computation that is approximate solutions of enormous linear systems of equations along with 
ill-posed forward operator matrix. The best rule can be referred to in [5]. This formula needs k steps by 
applying the Lanczos bidiagonalization of matrix A [1-4-5-6]. A comprehensive structure of a given algorithm 
summarized inside [6] and [5] in detail. The original system of equations is substituted with a system of 
lowered dimension to improve the speed of a given solution procedure greatly 
while being able to solve the original problem with a high degree of accuracy [4]. A least-squares QR (LSQR) 
method is applied to select the best value of a regularization parameter. The Lanczos bidiagonalization was 
performed using the MATLAB-based regularization tools, which is open source [7].finally, the new method was 
applied to real gravity data obtained from the Obama geothermal field. 
 
LANCZOS BIDIAGONALIZATION OF A REGULAR MATRIX 
 

For a rectangular matrix A of size m by n, a sequence of vectors 𝑢𝑗 ∈ 𝑅
𝑚 and 𝑣𝑗 ∈ 𝑅

𝑛  and scalars 𝛼𝑗  

and 𝛽𝑗  for j=1,2,…..,k can be calculated through the following process after k iterations of Lanczos 

bidiagonalization [2]: 
 

1-Given a starting vector po∈Rm , set 𝛽1=‖𝑝𝑜‖, 𝑢1 = 𝑝𝑜/𝛽1, and vo=O 
 
2. For j> 1 to K 
 
Rj=ATUj-𝛽𝑗𝑣𝑗−1 

 

𝛼𝑗 = ‖𝑟𝑗‖2 

 
𝑣𝑗 = 𝑟𝑗/𝛼𝑗 

 
Pj=Avj-𝛼𝑗uj                   j=1,2,000,k 

 

𝛽𝑗+1 = ‖𝑃𝑗‖2 

 
𝑢𝑗+1 = 𝑝𝑗/𝛽𝑗+1 

 
Here, vectors uj and vjreslting form the above Lanczos bidiagonalization process are known as the Lanczos 
vectors and they satisfy the recurrence relations. 
 
𝛼𝑗𝑣𝑗 = 𝐴

𝑇𝑢𝑗 − 𝛽𝑗𝑣𝑗−1 

 
𝛽𝑗+1𝑢𝑗+1 = 𝐴𝑣𝑗 − 𝛼𝑗𝑢𝑗  

 
Which can be represented in compact matrix form as 
AVk=Uk+1Bk 
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𝐴𝑇𝑈𝑘+1 = 𝑉𝑘𝐵𝑘

𝑇 + 𝛼𝑘+1𝑣𝑘+1𝑒𝑘+1
𝑇  

 
WhereUk+1=(u1,u2,…,uk+1)Vk=(v1,v2,…,vk)ei is the IthColumn of a unit matrix with the appropriate dimension, and 
Bk is a lower bidiagonal matrix. 
 

𝐵𝑘 =

{
 
 

 
 
𝛼1
𝛽2𝛼2
𝛽3
𝛼𝑘
𝛽𝑘+1}

 
 

 
 

 

 
In the case of exact arithmetic, the Lanczos vectors are orthonormal so that 
 
UT

k+1Uk+1=Ik+1,   and    Vk
TVk=Ik 

 

Where Ik is the K ×k identity matrix. 
 
RESOLUTION MATRIX ESTIMATION BASED ON LSQR 
 

For the matrix equation Ax= b, the LSQR algorithm of Paige & Saunders (1982) is based on the Lanczos 
bidiagonalization process described above with the starting vector po equal to the data vector b. In this case, 
Uk+1 = b. A solution xk is sought in k dimensional Krylov space spanned by Vk to minimize ‖𝐴𝑥 − 𝑏‖. The 
solution can be written in the form xk=Vkyk and it then follows that. 
 

min
𝑥∈𝑘𝑘

‖𝐴𝑥 − 𝑏‖ = min
𝑦𝜖𝑅𝑘

‖𝐴𝑉𝑘𝑦 − 𝑏‖ = min
𝑦𝜖𝑅𝑘

‖𝑈𝑘+1(𝐵𝑘𝑦 − 𝛽1𝑒1)‖ 

 
Using the orthogonality of Uk+1, the minimization of ‖𝐴𝑥 − 𝑏‖2 is satisfied by choosing yk to be 

solution to the least squares problem of min ‖(𝐵𝑘𝑦 − 𝛽1𝑒1)‖2There fore, the LSQR algorithm is a conjugact 
gradient method where a good solution in the Krylov subspace spanned by Lanczos vectors can quickly be 
obtained with a small number of iterations because each Lanczos vector points to a steep descent direction in 
subspace of eigenvectors [8]  
 
Suppose the SVD of Bk is Bk=PkDkQk

t. then we can represent A from eq (12) as 
 

A=Uk+1BkVk
T=(k+1Pk)Dk(Qk

TVT
k). 

 
Where non-zero diagonal values of Dk are called the Ritz values of matriz A, Uk=Uk+1Pk an Vk=VkQk are Ritz 
vectors If the Ritz values and corresponding Ritz vectors are close to the true singular values and singular 
vectors of matrix A eq (16) give the truncated SVD of matriz. A Since there exists a very efficient algorithm to 
calculate the SVD of the lower bidiagonal matrix Bk, we could efficiently calculate the SVD of A by means of the 
Lanczosbidiagonalization process. This is the basis for the LAQR- based resolution matrix estimation proposed 
by [8] and [10] as well as the approximate SVD estimation using the PROPACK package .[11]  
 
Gravity data 

 
The Obama geothermal field was covered by gravity surveys as a routine method for monitoring and 

evaluating the geothermal reservoir. A density of 2.3 g/cm3 was used to produce the Bouguer anomaly map of 
the study area (Figure 1). Visual inspection of Figure (1) shows that the area is characterized by positive gravity 
values covering the whole area, ranging between 11.2 and 13.5 mgal, and increasing in the eastern and 
southern part of the map area. This could be related to the low gradient in the subsurface structure. The 
observed variations in the anomalies reflect the half graben structure associated with the volcano-tectonic 
depression zone of Shimabara Peninsula. [12] 
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Figure (1): Bouguer anomaly map of the Obama field, ρ =2.3 g/cm3. The black rectangle indicates the southern part of 
the study area. The black line indicates the coastline. [12] 

 
Inversion method  
 

The purpose of this study is to know the structure of substratum beneath Obama area for a good 
comprehension of hydro-geothermal fluid dynamism within Obama. For this, inverse interpretation method of 
gravity anomalies is used [1] to approximate the structure of substratum. Density contrast between 
substratum and sediment rock is -0.2 g/cm3 determined, basement rock with average density of 2.4 g/cm3 
composed by Pliocene (Neogene) formations and the sediment rock with average density of 2.2 g/cm3 
composed essentially by Quaternary formations. [12].One of the main objectives of gravity study is 
interpretation of Bouguer anomaly data. The results are shown in Figure (2).  

 

Figure (2): Three-dimensional model of basement rock structure beneath Obama associated with estimated hydro-
geothermal flows and geological explanations. 
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The deduced model of substratum agrees well with previous geological studies. In Figure (2), wells are 
plotted on the 3D model. 
 

CONCLUSION 
 

A new method for the 3D inversion of gravity data that uses a Lanczos bidiagonalization method was 
used for our study area. The method used to decrease the instability and to guarantee the uniqueness of the 
solution is to combine geological and geophysical constraints (density values) into the inversion modeling. 
Field data tests show that our method is able to recover an anomaly source with different density contrasts. 
Moreover, our method is able to handle irregularly sampled data. Our 3D model shows the shape of the 
anomaly source in the study area. The deduced model of substratum agrees well with previous geological 
studies. 
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