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ABSTRACT 

 
Mind imaging information, for example, EEG or MEG is high-dimensional spatiotemporal estimations 

that normally require dimensionality decrease before being utilized for further investigation or applications. 
This paper introduces another dimensionality decrease technique in view of the late chart signal preparing 
hypothesis. In particular, we concentrate on an errand to order the cerebrum imaging signals recording the 
cortical exercises in light of visual boosts. We propose to utilize the resting-state estimations (i.e., before onset 
of the boost) of the subjects to manufacture a network chart. The diagram Laplacian and Graph-Based 
Filtering (GBF) are then connected to take in the low-dimensional straight subspace for the errand state 
estimations. 
Keywords: Brain imaging, Dimension reduction, Graph based filtering, Graph signal processing. 
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INTRODUCTION 
 

Automatic analysis of brain imaging data is an important topic in both neuroscience and brain 
computer interface (BCI) technology. In many cases, the task is to find the spatiotemporal neural signature of a 
task, by performing classification on cortical activations evoked by different stimuli [1, 2]. Common brian 
imaging techniques are Electroencephalography (EEG) and Magnetoencephalography (MEG). In particular, 
MEG measures the magnetic fields produced by electrical activity in the brain via extremely sensitive sensors 
distributed across the scalp. These measurements are highdimensional spatiotemporal data. For instance, in 
our experiments, we use a recumbent Elekta MEG scanner with 306 sensors to record the brain activity for 
1100 milliseconds. Furthermore, the measurements are degraded by various types of noise (e.g., sensor noise, 
ambient magnetic field noise, etc.) and the overall noise is difficult to model (potentially non-Gaussian). The 
high-dimensionality and noise limit both the speed and accuracy of the signal analysis, that may result in 
unreliable signature modeling for classification. The high-dimensionality of these signals also increases the 
complexity of the classifier. Combination of a complex classifier and availability of few data samples (due to 
time, cost, or study limitations) can easily lead to an overfit model. Thus, for a reliable study of brain imaging 
data, there is a need for a robust dimensionality reduction method that ensures inclusion of task-related 
information in the transformation process. 
 

Dimensionality reduction transforms the data in the highdimensional space to a space of fewer 
dimensions with a linear or nonlinear method. The commonly employed PCA is a classical approach to perform 
a linear mapping of the data in a way that the variance of the data in the low-dimensional representation is 
maximized. In addition to PCA, methods such as linear discriminant analysis (LDA), locality preserving 
projections (LPP), marginal Fisher analysis (MFA), and their numerous variants also serve as linear methods of 
dimension reduction (see [3] for details). Many nonlinear methods have also been proposed for dimensionality 
reduction. Self-organizing maps and other neural network-based approaches set up nonlinear optimization 
problems to learn the low dimensional manifolds (e.g., autoencoder [4]). Laplacian eigenmaps (LE) [5] and 
diffusion maps [6] capture the geometric structure of manifold to help map the data points into a lower 
dimensional space. 
 

In this work, we propose to apply the recent graph signal processing theory [7] and a graph based 
filtering algorithm (GBF) for dimensionality reduction, and investigate techniques to construct the connectivity 
graph suitable for brain imaging. Compared with existing dimensionality reduction approaches, the 
distinctiveness of the GBF-based approach is that it can use the underlying graph model (if exists) as side 
information to help reduce the dimensionality in a more robust manner. We hypothesize that when the 
measurements are degraded and noisy, the side information (modeled as graph) may contain more accurate 
correlation information than the measurements. Thus, by leveraging the graph, we may learn a more accurate 
low-dimensional subspace. This is different from previous work that uses solely the measurements to learn the 
low-dimensional subspace / manifold (e.g., PCA, Laplacian eigenmaps). 
 

Therefore, here we propose to perform connectivity analysis on the resting-state brain imaging 
signals (i.e., when a subject is not performing an explicit task). Then, we compute the graph Laplacian of this 
resting-state connectivity graph, and use its dominant eigenvectors to form the low-dimensional subspace. 
Subsequently, we project the noisy task-state measurements (evoked by visual stimuli) to this low-dimensional 
subspace to reduce the dimensionality of the signals. The reduced-dimensional signals are then subject to a 
SVM classifier to assess their inclusion of task-related discriminative information. 
 

This work is inspired by [8], which uses GBF to learn a “normal” linear subspace for anomaly 
detection in wireless sensor networks. In [8], measurements that are deviated from the normal subspace are 
deemed to be abnormal. GBF has also been shown to be useful in image compression [9] and temperature 
data [10]. A few signal features motivated by graph signal processing have been proposed [11, 12]. In [13], 
graph Fourier transform is applied to decompose brain signals into low, medium, and high frequency 
components for analysis of functional brain networks properties. Our work focuses on linear dimensionality 
reduction and directly uses a few projections onto the graph Laplacian eigenvectors as the feature. We 
investigate the usefulness of this approach in a supervised classification task of brain image signals. The 
proposed GBF-based approach is also different from Laplacian eigenmaps [5]. Laplacian eigenmaps use solely 
the measurements to learn the low-dimensional manifold. There is no notion of side information in Laplacian 
eigenmaps. The idea and mechanism to produce low-dimensional representations is also different. 
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Fig. 1: MEG experimental setup for application of dimensionality reduction. 
 
SET UP OF THE EXPERIMENT 
 

In order to systematically evaluate performance of different techniques in dimensionality reduction, 

we use two sets of data, synthetic and real MEG data. 

In our synthetic data, we generate spatiotemporal signals with both Gaussian and non-Gaussian 

noise. The synthetic signal Ht therefore consists of two components, signal St and noise Nt: 

 Ht = St + Nt (1) 

where St is the signal vector and Nt is the noise vector, Ht, St, and Nt are defined in Rm. 

We generate St based on the graph information. The graph consists of m nodes, with each pair of 

nodes with a probability of p to be connected together. The edge weights between different nodes 

are drew from 0 to 1 with uniform distribution, that are represented in an m × m symmetric 

adjacency matrix W. We then perform decomposition of the Laplacian matrix L (details in Section 3) 

to reach eigenvectors fi ∈ Rm. We assume St is generated as follows: 

  (2) 

where β and γ are the scalar weight for components, fi is the i-th eigenvector of L, k is the number of 

eigenvectors used to generate signal, and at,i(1 ≤ i ≤ k) is a uniform random variable in range [0,1] 

[14]. For the sake of the binary classification scheme, we change the values of β and γ to produce 

different classes. 

For noise component, we generate three kinds of noise: white noise with Gaussian distribution, 

white noise with uniform distribution, and sparse white noise. For sparse white noise, we randomly 

choose e% nodes among m nodes and add uniformly distributed noise to their respective signal to 

reach the final high dimensional data Ht. The final data consists of n temporal samples: [H1,H2,...Hn]. 

In addition to the synthetic data, we propose a experiment of classifying the MEG signals 

recording the brain activities in response to two categories of visual stimuli: face and object. There 

are 16 subjects in the experiment. As depicted in Figure 1, MEG signals from 306 sensors have been 

recorded as 16 subjects were randomly exposed to 320 face images and 192 non-face images. The 

recording started 100ms before the stimuli presentation and continued for 1 second after the 

presentation of the stimuli (i.e. 1100ms in total). Each stimuli was presented for 300ms at the center 

of the screen and the subjects were instructed to look at each stimuli with minimal movement. There 

were no (behavioral) responses required by the subjects. 

We apply PCA, LDA, LE and our GBF to reduce the dimensionality of these two set of data and use 

SVM to classify whether the subject views faces or objects. The performance is judged by the 

classification accuracy. 
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GBF-BASED DIMENSIONALITY REDUCTION 
 

We propose to apply GBF for dimensionality reduction with three steps: pre-processing, 
decomposition and projection. 
 

In( the pre)-processing step, we need to construct the graph 
 

G N,ε,W based on the application or data itself. In the graph G, N represents the nodes or sensors in 
the graph and ε represents the edges connecting the nodes. Based on the graph G, we can calculate the 
adjacency matrix W, which shows edge weights between different nodes. There are many ways to compute W. 
Here is a commonly-used method: 

 
(3) 

 
 
where ρ(i,j) = ci,j/(√ci,icj,j) is the correlation()∈coefficient[01] using elements of the covariance matrix C. d i,j , 
represents the normalized Euclidean distance between sensor i and j. σ1 and σ2 are exponential decay rates 
[8]. Later, we also describe other techniques to determine W suitable for brain imaging data. 
 

In the decomposition step, we first calculate the normalized Laplacian matrix L by L = I WD  , 
where D is the diagonal degree matrix of D . Then we decompose L using L ={ U}ΛUT where U is the 
matrix consisting of eigenvectors ul l=1,...,N and the diagonal elements in Λ are related eigenvalues. The cut -
off frequency is found by sorting the eigenvalues from higher to lower. The eigenvectors whose eigenvalues 
are larger than the cut-off frequency are used for building the subspace. 
 

In the projection step, original data is projected onto the subspace to obtain the lower dimensional 
data. 
 
EVALUATION ON SYNTHETIC DATA 
 

In this section, we compare the performance of GBF, PCA and LDA on dimensionality reduction of 

noisy synthetic data. We use a binary SVM classifier on the output of each method, and compare the 

results in different cases of noise. We here show that GBF is more robust than other compared 

techniques, especially when the signal noise is non-Gaussian. 

 

We use the synthetic data model in Section 2 to generate n = 300 data samples for each class 

with m = 100 nodes in the graph where each pair has a probability p = 0.3 connecting together. For 

signal part, we use top k = 8 eigenvectors of L as signal generating components and set β1 = 4, γ1 = 

2.5 for one data class and β2 = 2.5, γ2 = 4 for the other. For noise component, all three types of noise 

have mean μ = 0 and variance σ2 = 1/6. We then apply GBF, PCA and LDA on the synthetic data to 

decrease 

 Gaussian noise White uniform 

noise 

Sparse white 

noise 

GBF 0.8564 0.8718 0.8744 

PCA 0.8641 0.8564 0.8590 

LDA 0.8385 0.8436 0.8333 

Orignal 0.8692 0.8718 0.8564 

Table 1: Classification accuracy with synthetic data 

the dimensionality from m = 100 to 8. As for the GBF, we use (3) with parameters σ1 = 0.2 and σ2 = 

0.9 to estimate the adjacency matrix W. We perform 10-fold cross validation and compare the SVM 

classifier performance. Table 1 presents the classification accuracy using each technique with SNR = 

25dB for white noise and SNR = 25dB,e% = 5% for sparse white noise. Based on these results, in 
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existence of Gaussian noise, PCA performs better. It is because Gaussian data has no higher order 

statistics beyond variance. Thus, PCA is efficient to model Gaussian data. However, when it comes to 

the non-Gaussian noise, GBF performs better than any other methods. 

We further analyze the robustness of GBF under different levels of signal to noise ratio (SNR = 

10dB to SNR = 60dB) for the white noise. Figure 2(a) indicates that as the SNR increases (i.e. more 

than 25dB), GBF outperforms the other two methods, and even has better performance than the 

original data. We also assess the performance under different percentages of noise (SNR = 25dB, e = 

1% to e = 50%) for the sparse white noise. The second set of results illustrated in Figure 2(b) 

indicate that GBF mostly performs either better or as good as PCA with different levels of sparsity in 

the noise. After analysis of the synthetic data, we proceed to use real MEG data for final evaluation, 

in the Section 6. 

 

Fig. 2: Comparison of classification accuracy: (a) White noise (uniform distribution) with SNR from 

10dB to 60dB. (b) Sparse white noise with SNR=25dB and the ratio of noisy nodes from 1% to 50%. 

BRAIN CONNECTIVITY ANALYSIS 
 

In application of GBF to brain signal processing, one of the most important problems is to find a 
suitable connectivity graph. Our brain can be considered as a complex network [15] which is so complex that 
the sophisticated analysis techniques are needed. Neuroscientists have suggested three different brain 
connectivities: structural connectivity, functional connectivity and effective connectivity, which can be used as 
the graph for GBF. Structural connectivity describes the physical connections in the brain. Functional 
connectivity quantifies functional dependencies between different brain regions. Effective connectivity 
presents directed influence or causal relationship between neuronal system components [16]. In this paper, 
we investigate four different connectivity analysis to build the graph for GBF: three functional connectivity 
analysis and one effective connectivity analysis. In each case, we analyze the restingstate recordings 
(measurements before the onset of the stimulus) to build the connectivity graph, and we use this resting-state 
connectivity graph to model the task-state measurements (after the onset of the stimulus). Given the resting- 
state sensor measurements (time-series signals) at two spatially=1-separated2 brain regions: X and Y written 
as xt and yt for t , ,..,T, we discuss how to compute the edge weight wx,y. 
 
Correlation connectivity  
 
Correlation is a basic estimation for statistical dependency for function connectivity [17]. We consider the 
correlation coefficient between X and Y as the edge between these two regions: 
 

 
 
(4) 
 
where x¯ and y¯ are the sample mean of X and Y . sx and sy are sample standard deviation of X and Y . 
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Coherence connectivity  

Coherence connectivity is a functional connectivity, quantifying oscillatory interdependency between 

different brain regions. It is the frequency domain analog of the cross-correlation coefficient. Given 

two series of signals x(t), y(t) and a frequency f, the first step is to spectrally decompose the signal 

at target f to obtain the instantaneous phase at each time point [18]. After band-pass filtering each 

signal between f ± 5Hz, the convolution of f(t) with a Morlet wavelet centered at frequency f 

provides the instantaneous phase at time t. Thus, the two signals can be represented as: x = 

Ax(t)ejφx(t) and y = Ay(t)ejφy(t), where Ax(t) and Ay(t) are amplitudes. φx(t) and φy(t) are the phase for 

X and Y at time t. Then the coherence connectivity edge is calculated as below: 

  
 
Phase locking value (PLV) connectivity  
 

The phase locking analysis applied to MEG has been described in several articles [19] [20]. The PLV is 

a measure of the phase synchrony between two time-series signals at a given frequency. Compared 

with coherence connectivity, PLV separates the amplitude effects from the consistency of the phase 

difference [19]. So the previous calculation procedure are the same as coherence connectivity. After 

we get x = Ax(t)ejφx(t) and y = Ay(t)ejφy(t), the PLV connectivity edge between region X and Y is then 

defined as timeaveraged value: 

 
 
Granger causality connectivity  
 
 

Granger Causality captures the causality relationship between two regions in both directions and at 

different frequencies, which inspects directed interactions of neural assemblies. The Granger 

causality, at each frequency, is defined by the ratio of predicted power to total power [21]. To show 

the prediction of the signal from one region by taking into consideration the past of the signal of the 

other region, univariate and bivariate AR models are fitted to the regions X and Y . For univariate AR 

model, the prediction error depends only on the past of the own signal [22]: 

  (7) 

For bivariate AR model, the prediction of a signal is based on the past of its own and also on the 

past of the other signal: 

  (8) 
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In both cases, the u1,u2,v1,v2 are the temporally uncorrelated residual errors. a1,b1,a2,b2,c2,d2 are 

model coefficients. The accuracy of prediction is expressed by the variance of the prediction errors: 

 ΣX|X− = var(u1),ΣY|Y− = var(v1) (9) 

ΣX|X−,Y− = var(u2),ΣY|Y−,X− = var(v2) 

The Granger causality of Y to X and X to Y as measures of linear feedback between two signals are 

defined by [23]: 

  (10) 

Because GBF requires symmetric matrix as adjacency matrix, 

we compute the maximum value of both terms as the final 

Granger causality connectivity edge for the strength of 

interaction: 

 wx,y = max(GCY→X,GCX→Y ) (11) 

 
EVALUATION ON MEG DATA 
 

We test our algorithm with real MEG data from the experiment described in Section 2. First, we test 
all types of connectivity graphs, generated with resting state measurements (100ms before the stimuli 
appears), listed in Section 5 for GBF on the real data and find the one with the best performance which will be 
applied in the subsequent experiments. Then we compare the dimension reduction performance among 
different algorithms: GBF, PCA, LDA and LE. We use a MATLAB open source toolbox BrainStorm to compute 

the connectivity graphs [24] 
. 

 
 

 

 

 

 

 
Table 2: Classification accuracy with MEG data 
 
Comparison between different graphs  
 

In this experiment, we only apply GBF with different kinds of connectivity graph on the brain signal 
data to reduce its dimension. We use the brain signal data from 96ms to 110ms after the stimuli appears for 
the experiment. We choose 96ms to 110ms because cortical activities in this duration have been shown to 
contain rich discriminative information [2]. We use a 20ms-long sliding window for one time accuracy 
calculation, average the data over time and obtain a 306 dimensions vector. Step length is 1ms. 
 

 Method Accuracy 
Data 
Dimension 

 GBF(GCC) 0.6800 21 

 PCA 0.6688 21 

 LDA 0.6690 1 

 LE 0.6296 21 

 Original 0.6708 306 
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Fig. 3: Comparison of different connectivity graphs for GBF 
 
Figure 3 shows that GBF with Granger Causality connectivity (GCC) topology gives the best overall 
performance. Therefore, we choose this connectivity as our graph in the following experiment. 
 
Comparison of GBF, PCA and LDA  
 

In this experiment, we use a 20ms-long window (average the data over time and obtain a 306 
dimensions vector), set the step length to 1ms. GBF, PCA, LDA and LE are applied to decrease the dimension. 
We also compare the results with the one without dimension reduction. For classification, we apply SVM as 
the classifier and average the accuracy over time as the final results. We use 10-fold cross validation and 
report the average classification accuracy. According to Table 2, the performance of GBF is better than PCA 
when the dimensionality is reduced from 306 to 21. 

 
CONCLUSION 

 
Graph-based filtering (GBF) is a promising signal processing technique when the data at hand can be 

modeled as a graph. The graphbased representation of cortical processes has been studied in both functional 
and structural connectivity graphs. In this work we therefore proposed and evaluated application of GBF 
dimensionality reduction on brain imaging data. Based on our experimental results on synthetic data and MEG 
data and in different levels of noise, GBF can maintain more information in the process of dimensionality 
reduction, due to the use of graph-based side information. This is more evident when the signal contains non-
Gaussian noise, such as the brain imaging data. In our future steps we aim to address the complexity of GBF 
and its employment in real-time applications. 
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