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ABSTRACT 
 

 In this paper there is a generation model, which satisfied a power law, also the weight of each layer is 
considered. Physicists investigate the statistical properties of networks, such as laws of the number of nodes 
distribution links, unlike social scientists. By studying these questions, it was found a large number of amazing 
and intriguing properties of real networks, which weren't studied by mathematicians and sociologists. These 
properties have stimulated the development of new theories, models, measurements, revealing new 
fundamental networking features. Physics journals publish  vast majority of the most important works in this 
field now. The term "complex networks" appeared at the beginning of this century and refers to networks with 
more complex architecture than the classical random network with a given number of nodes and links, or 
lattice in crystals. Typically, such networks have a small number of sites with a large number of bonds - hubs, 
which largely determine the properties of these networks. It turned out that most real networks (biological, 
technical, social) are complex. Recently, modeling of various epidemics in the network became popular. 
Mathematical analysis of such epidemics can simulate them in artificial conditions, but also analyze the 
possible damage and the risk of this epidemic. This subject has been widely used and it is actually at the 
moment. 
Keywords: free – scale network, epidemic, risk, generation, the Lu Chang model, power  law distribution. 
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INTRODUCTION 
 

 Global development of the Internet and social networks has attracted a big attention of scientists: 
there are many papers about that [1-4, 8, 19, 20] which consider different models of information epidemics 
development [6, 18]. There are paradigmatic layered models of epidemics in scale-free networks in papers [7, 
9-16], however, in test networks is not considered the importance of nodes.  
 

The network paradigm with physical concepts and methods has become a major and very effective 
tool for the study of real complex systems in recent years. Specialists in graph theory and sociology studied 
network structure earlier.  
 

 At present there are a considerable number of works that examine different models of building 
relationships in networks. There is a large number of works dealing with various models of information 
epidemics. There are a small amount of works about modeling epidemics in scaleless networks at present 
time. 
 
 
Math equations 
 

Barabási and Albert proposed a simple and elegant model of the origin and evolution of scaleless 
networks. They showed that two conditions are necessary [1] for the emergence of scaleless networks: 

 

1. Growth. Starting with a small number of nodes 0m , at each time step a new node is added with  

  0, m m m  links that connect the new node with m different existing nodes; 

2. Preferential attachment. When nodes to which the new node joins are selected, it is assumed that the  
probability  P, with which the new node will be connected to the existing node i, depends on the 

number of links wich this node is already has with other nodes, so that:    i i j

j

P q q q  . 

Scale-free network is the phenomenology manifestation of critical phenomena in complex systems, 
because their structure obeys a power law [12].  

 
We shall look at the model, where the significance of nodes depends on a value of information, which 

is generated, processed and transmitted by the node, and a number of node communications. To define the 

weight for nodes we shall use the Lu Chang model. This model is defined by a set of weights  1, , nw w w , 

which displays an expected sequence of powers. The probability of finding an edge between i and j is 

i jw w /
k

k

w , where 
 1/ 12

1
k dn









. They admit loops from i to i, so the expected degree of a vertex 

will equal: 

                               .                        1
i j

i

J kk

w w
w

w



 

 

Of course it  has a sense if 
2

i i k

k

max w w . 

 

In the power – law distribution the probability of k - vertex degree is  /kp k    , where 

 
1k

k


  



 .   

 

The probability of the degree will be      ~ Kis B  and    1/ B    β 1 ζ β  . Assuming that weight will 

decrease, we will receive: 
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1,   i

i
w K BK

n

   . 

After solution we will get:  
 

 
 

 
1/ 1

   / .                             2iw i nB
 

  

 

A task is generation of random network graph  ,G V E  with n vertices and degree distribution, which 

satisfy the power – law distribution with constant    iP d d d    where  1, deg ,i i id v v   – i-

vertex of graph G , and with indication of weight for network node by the Lu Chang model.  

 
At the beginning of algorithm  there are following parameters: 
 

1. Natural number n is number of tops in graph G ;  

2. The average degree of vertices d ;  

3. The index distribution 1  ;  

4. The natural number k n  is responsible for the lower limit of the distribution;  

5. The natural number m  is parameter for parallel algorithm work.  

 

At the end there is the graph G  with number of tops n, which degrees are distributed by the power – 

law distribution with parameter   

 
The generation of graph is necessary to separate into following steps: 
 

1. The generation of random number iw , which is distributed by the power – law distribution. These numbers 

are possible to generate as:  
 
1) From the normalization ratio (3) we shall find a constant а  (4): 

   
1 1

;     3

n n

i

k k

P w x dx ax dx

 

  
 

 1 1

1
  .                 4

1
a

n k
 


 




 
 

 
2) Then the random numbers we shall find with following term:  

     
1

1 11 1            1 * , 5iw n k y k
         

where y  is uniformly distributed random quantity. 

 

2. The definition of numbers b*i id w . 

 
1

  .                       6
n

ii

d
b

w





 

 

3. The calculation of M : 

 1  .                         7
2

n

ii
d

M 


 

 
4. The calculation of the number sequence: 
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1 1 D d , 2 1 2 D D d  ,  1 1  . 8i i iD D d    

 

5. The parallel generation of M  edges. 
 

This algorithm of edge generation is presented on the Fig.1. We have a possibility to build a free – 
scale graph, based on statistic data [5, 9, 17].  

 

A connectivity coefficient of edges   impacts on the free – scale graph building. Free – scale graph  

with various coefficients of connectivity can obviously be tracked (Fig. 2.). 
 
Consideration of the networks where there is distribution with non-rigid regularity degree of the 

vertex   P k , different from the lattice constant of networks, is interesting. Moreover, the proportion of 

vertex k  - degree   P k  can be exponential, power, etc.  

 
Such network can be formal to divide into layers by the size K. This approach is quite natural, because 

the distribution   P k considers the inherent network nodes. At the same time, network the arch can 

theoretically connect tops of all levels. The number of layers max minM k k   is determined by the total 

number of vertices of the network N  and   P k - a power law distribution of degree of its vertices. Thus, 

mink  can reach 1, it is possible to find maxk  :  

 

 max

1
P k .  

N
  

 

From this we have for the power distribution: 
 

γ

maxk N,    2 3.    

 

The higher the degree is, the proportion of such peaks in N  is smaller.  

 
At the same time, the network should take into account the practical limitations on the dialogue of 

the various layers representatives. For example, k  -layer nodes have the opportunity to interact with tops of 

specified layers, for example with a plurality (k r ) –layers. All this should be done for the most complete 

variety of epidemiological processes.  
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Fig. 1. A scheme of edge generation for free – scale graph 

 

 

 

Fig. 2. Visualizing of free – scale graph with parameter a) 0.5  , b)   0.25  , c)   0.1  , d)   0.01,   

e)   0.001   
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Splitting scale-free network in layers on top of degree is possible only in the case when nodes are 
separated on the condition: 

:
M

i j ij

k i

k g G i


 
   
 

  

where 

ik  is layer of the i tops degree; 

 jg is top of scale-free graph G ; 

G  is scale-free graph; 

ij  is edge between nodes i and j. 

 
Thus, it can be formulated as follows: 
 

For each ik  layer without a large-scale network is true that ik  -  is the layer where each vertex jg  with a 

degree i, belonging to the network of the G , such that the sum of all its links 
js  for each vertex jg  with 

other vertices  1, sg N , equal to i. 

Build the adjacency matrix, defines network connection of layers. 
 

min min ,

min

( | ) ( | ) ( | )

( |, ) , ,

( | ) ,

k        k      k

                                          

k          k          k

                                           

k        k  

min min max

min max

max

i j i j i j

i j i j i j

i j i j ,

 

       k
max maxi j

 
 
 
 
 
 
 
 
 

 

 

 ,k i j is linkage between vertex i and j. If there is a connection, this element takes the value "1", 

otherwise "0". This matrix has a number of properties. In particular, the sum of the elements in each row is 
equal to its number of rows, ie .: 

 

 | . 
max

min

i

j i

K i j i


  

 

In addition, the matrix K is symmetric about the diagonals of [20]: 

 

   | | .  K i j K j i  

 

   when   ,  , , i min max j min max  . 

 
A problem of in layers epidemic development is very interesting. As epidemic can be transferred just 

between related vertices, the larger links from infected vertex and the higher the degree is, than faster this 
vertex will spread the infection. 

 

If  i is some vertex from n vertices of some layer, then place 0 1 i  and get a formula of vertex degree: 

   1/ 1
   ,                     9ikw li

 
  
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where 
 1/ 12

1
l dn









 at 1 i n  , where the parameter  1/ i

i

d n w   is showing the 

average value of degree. 
 

Then a total weight of k -layer represents a sum of all vertices weight: 

 

 
1

,                            10
n

k ik

i

w w


  

where ikw  is weight i-node k -layer of free – scale network. 

 
To define  damage because of vertex infection, use the formula: 
 

   ,                           11k k
i t

t

kw
U

S
  

where kw  is node’s weight k  - layer of free – scale network; 

tS  is the number of uninfected nodes in Poisson’s network. 

 

We substitute the formula (10) into (11) and define the damage for k  -vertex:  

 

 

 
1/ 1

1  .            12

n

k k i
i

t t

k likw
U

S S

 

 


 

 

Then an infection of k -layer of free – scale network is: 

 

 

 
1/ 11

  ,                  13

n
i

i
k

i t

t

k
liU
S




 




 

where i  is uniqueness coefficient of i-node. 

 
Accordingly the damage of all network we can calculate by formula: 
 

 

 
1/ 11

1 1

  ,    14

n
i

N N i
k

i t

i i t

k
liU U
S




 

 

 


   

 

The possibility of infection as a link between healthy and infected vertices is calculated by formula:  
 

   1
   ,            15

k

k m
i k k

kx
P P k

x





   

 

where  P k  is the probability density of power – law distribution. 

if to consider clustering degree we will get:  
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 
 1

   ,     16
k

k k m
i k

k k

KP k K kx
P

x

 

  
   

where k  is the degree of clustering, k  is correction factor of the degree of clustering. Considering 

the fact of the dependence of layer danger degree from community quantity, so two factors can be changed  
 

   1
   ,          17

k

k m
i k k

Kkx
P KP k

x





   

where k  is common coefficient. 

 

In free-scale networks the possibility of appearing the edge pj  of i- node with j-node for all vertices is 

the same: 

   
1 1

.                18
i n

k

i t i

n j

P U P
 

  

 
The risk is possibility of damage appearing. In the context of epidemiological modeling the risk is a 

possibility of a single network nodes, a network layer or the all network will be damaged. Thus, you have to 
calculate damage and risk on the basis of the chosen scale: the network node, the network layer or the all 
network 

 
We calculate the risk for network node as possibility of damage appearing: 
 

   .                      19k k k

i t i t i tRisk P U U   

 

We get the formula of infection node risk in free-scale heterogeneous network [10]: 
 

 
1 1

.                  20
i n

k k
i t i

n j t

kw
Risk p

S 

 
   
 
  

The risk formula for k-layer: 
 

1 1

i n
k k

j i t

n j

Risk p U
 

 
    
 
  

 

 
1/ 11

1
.     21

n
i

k
i

k m

k

t

k
Kkx li

x S





  


 


 

 

And finally the risk formula for all free-scale network:  
 

1
1 1

ki n
k m

j k
n j

Kkx
Risk p U

x




 

 
     
 
  

 

 
1/ 11

1

.            22

n
i

N i

i t

k
li

S




 






  
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CONCLUSION 
 

We have received analytical expressions for calculation risk of scale-free models such as Chung-Lu, 
being composed of a large number of nodes, and take effective measures to risk management. 
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