

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Mast Cell Stabilizing Potential of Plants Containing Polyphenols: A Review.

Varinder Singh, Manjot Kaur, and Richa Shri*.

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab – 147002, India.

ABSTRACT

Mast cells play a vital role in the defence of the human body. Mast cell degranulation has been implicated in various ailments including allergies, bronchial asthma, interstitial cystitis, breast cancer, urticaria, etc. Hence mast cell stabilizers play a significant role in the prevention of these disorders. The primary objective of this review is to study the reports on different plants containing polyphenols with significant mast cell stabilizing activity. It includes findings from numerous studies both in vitro and in vivo indicating the potential benefits of polyphenol rich plants in mast cell stabilization. Various databases such as Pubmed, Google Scholar, Science direct, etc. were searched to collect reports on plants containing polyphenols investigated as mast cell stabilizers from the time period 1995-2015. The large number of plants described in this review clearly demonstrated the importance of polyphenol-rich plants in the mast cell stabilization. Literature shows that such plants significantly prevent mast cell degranulation by diverse mechanisms including inhibiting histamine release, reducing production of mediators of inflammation and antioxidant activity in various allergic/immune reactions in experimental models. Plants containing polyphenols/plant-derived polyphenols may serve as good sources for developing effective and safe mast cell stabilizers. **Keywords:** Mastocytes stability, degranulation prevention, natural phenolic compounds

*Corresponding author

INTRODUCTION

Mast cells or mastocytes are large connective tissue cells, originated from a distinct precursor in the bone marrow called hematopoietic progenitor cells. These play a pivotal role in defense mechanisms of human body [1]. They are residents of several types of tissues specifically in the vicinity of blood vessels, and are prominent near the boundaries between the outside world and the internal environment, such as the skin, mucosa of the lungs and digestive tract, as well as in the mouth, conjunctiva and nose [2]. They are activated through antigen cross linking of their surface receptors ($Fc \in RI$) for IgE antibodies leading to degranulation and the release of vasoactive, and pro-inflammatory mediators that include histamine, cytokines and proteolytic enzymes [3,4].

Mast cells are involved in variety of ailments such as different types of allergic and inflammatory reactions, atopic dermatitis, asthma, ulcers, psoriasis, obesity, interstitial cystitis, cancer etc [5]. Hence, mast cell stabilizers hold significance in the management of such disorders. They block calcium channels essential for mast cell degranulation, thus stabilizing the cell and thereby preventing release of several mediators. They are classified as chromone-like drugs (disodium cromoglycate, nedocromil sodium) and dual-action antihistaminics (ketotifen, azelastine, second-generation H1-receptor antagonists: cetirizine, loratidine). Several adverse effects associated with these drugs are bronchospasm, wheezing, angiodema, eosinophilic infiltration, anaphylaxis, joint swelling, pain and headache, drowsiness, lethargy, dryness of mouth, etc.

Need for plants as source of mast cell stabilizers

Despite the relative success of the most commonly prescribed mast cell stabilizer, disodium cromoglycate, ketotifen, etc. there still remains an urgent need to design new substances that are economical and relatively safer with fewer adverse effects. One of the most established mast cell stabilizer - disodium cromoglycate (DSCG) was first synthesized from a plant chromone – Khellin, present in Ammi visnaga by Roger Altounyan and his colleagues in 1965 [6]. Thus medicinal plants are currently being explored widely for finding new mast cell stabilizers. Plants provide us with several phytoconstituents e.g. simple phenols, coumarins, flavonoids, alkaloids, terpenoids, etc. that have demonstrated potent mast cell stabilizing potential in experimental models [7].

METHODS

Various databases such as Pubmed, Google Scholar, Science direct, etc. were searched to collect reports on plants containing polyphenols investigated as mast cell. The present review summarizes various studies, both in vitro and in vivo, conducted in the time period from 1995 to 2014 on different plants containing polyphenols for mast cell stabilizing activity (Table 1).

Plant	Extract/ Constituent	Model	Dose	Observations	Referen ce
Abrus precatorius L. (Fabaceae)	Ethanolic extract	In-vivo: Egg albumin induced mast cell degranulation in mice and PCA reaction in rats.	100- 150 mg/kg, i.p.	Significantly protect degranulation of mast cell and inhibit area of leakage of dye in passive cutaneous anaphylaxis. LD50 is more than 1300 mg/kg.	[24]
Acanthopana x senticosus (Rupr. & Maxi m.) Harms (Araliaceae)	Aqueous extract	In-vitro: Compound 48/80 induced RPMC. In-vivo: PCA reaction induced by anti- dinitrophenyl IgE.	0.01 to 2.0 g/l 2.0 g/kg	Dose dependent inhibition of histamine release. Inhibition of PCA reaction significantly.	[25]
		In-vivo:	1 g/kg	25% inhibition of systemic	[26]

		Compound 48/80 induced systemic allergy.		allergy and 51% inhibition of PCA reaction.	
Aegle marmelos (L.) Corrêa (Rutaceae)	Unripe fruit extract	In-vivo: Acetic acid induced ulcerative colitis and indomethacin- induced enterocolitis in Wistar albino rats.	150, 200 and 250 mg/kg	Anti-inflammatory, antioxidant, and mast cell stabilizing effects in inflammatory bowel disease.	[27]
<i>Ailanthus</i> <i>excelsa</i> Roxb. (Simaroubace ace)	Methanolic extract	In-vivo: Clonidine induced mast cell degranulation.	100, 200 and 400 mg/kg	Dose dependent inhibition of mast cell degranulation.	[28]
Albezzia lebbeck (L.) Benth. (Fabaceae)	Successive chloroform, methanol and water extracts of bark and leaves	In-vitro: compound 48/80 induced reaction	-	Methanolic extract showed significant mast cell stabilizing activity	[29]
	Ethanolic extract	In-vivo: Ag-IgE Activated mast cells.	50-300 mg/kg	Significant mast cell stabilisizing potential with IC50 of 85 μg/ml.	[30]
<i>Allium cepa</i> L. (Amaryllidace ae)	A herbal fraction (ALC- 02)	In-vitro: Compound 48/80-induced RPMC and systemic anaphylaxis reaction.	-	Potent inhibition of histamine release both <i>in- vitro</i> and <i>in-vivo</i> from sensitized mast cells.	[31]
Ammomum xanthiodes Roxb. (Zingiberacea e)	Aqueous extract	In-vivo: Compound 48/80-induced systemic reactions and serum histamine release in mice.	0.005– 1 g/kg	Reduce mast cell mediated allergic reactions by significantly reducing histamine release and intracellular calcium.	[32]
Aristolochia bracteolate (Aristolochiac eae)	Chloroform extract	In-vivo: Compound 48/80 induced RPMC.	100, 200, 400, 500 mg/kg orally	Reduce the number of activated mast cells dose dependently.	[33]
		In-vivo: Compound 48/80 induced systemic anaphylaxis in mice.	100,20 0, 400,50 0 mg/kg orally	Dose dependent inhibition of mortality in mice.	
Artemisia iwayomogi Kitam. (Asteraceae)	Aqueous extract	In-vitro: Compound 48/80 induced RPMC. In-vivo: Compound 48/80 induced	0.001– 1 mg/ml 0.001– 1 g/kg Body	Dose dependently attenuate histamine release and reduce intracellular calcium from activated mast cells. Also inhibit the production of IL-6 and other cytokine mediators associated with	[34]
		systemic reaction.	weight	PCA.	

		In-vivo: PCA	0.01-1		
		reaction.	g/kg body		
Bauhinia variegata L. (Caesalpini aceae)	Ethanolic extract	In-vivo: Compound 48/80 induced mortality in mice.	weight 400 mg/kg	Reduce mast cell degranulation by 71%and mortality by 50%.	[35]
Baliospermu m montanum Blume. (Euphorbiace ae)	Chloroform extract	In-vivo: Mice treated with compound 48/80.	200 and 400 mg/kg	Dose dependent inhibition of mast cell degranulation.	[36]
Cassia occidentalis L. (Fabaceae)	Ethanolic extract	In-vivo: Egg albumin sensitized rat mast cells.	250 mg/kg	Significant inhibition of mast cell degranulation. But higher doses are cytotoxic.	[37]
<i>Cassia alata</i> L. (Fabaceae)	Hydro methanolic extract	In-vivo: Triple Ag or sheep serum induced mast cell degranulation in rats.	200 mg/kg	Significant mast cell stabilizing property. Rhein and Kaempferol showed this effect at 5mg/kg.	[38]
Chrysanthemi sibrici L. (Asteraceae)	Ethanolic extract	In-vitro: Dinitro phenol -BSA or compound 48/80-induced degranulation in RBL-2H3 mast cells.	-	Dose dependent inhibition with IC50 values of approximately 49 μg/ml and 76 μg/ml, respectively.	[39]
		In-vivo: Compound 48/80 induced systemic anaphylaxis reaction in mice.	300mg /kg	Dose dependent inhibition up to 48%.	
Cichorium intybus L. (Asteraceae)	Aqueous extract	In-vitro: Compound 48/80 induced RPMC.	1-1000 μg/ml	Dose dependent inhibition of histamine release.	[40]
		In-vivo: PCA induced by anti- DNP IgE and systemic anaphylaxis induced by compound 48/80.	1000 mg/kg	Significant inhibitory effect on induced in vivo allergic reactions.	
<i>Cissus sicyoides</i> L (Vitaceae)	Methanolic extract	In-vitro: Compound 48/80 induced histamine release from RPMC.	0.5 mg/ml	Significant inhibition of histamine release.	[41]
Clerodendru m serratum (L.) Moon. (Lamiaceae)	Aqueous extract	In-vivo: Clonidine induced mast cell degranulation in rats.	100 mg/kg, i.p.	73% inhibition of degranulation of mast cells.	[42]

Clinopodium	Water extract	In-vivo:	1–100	Inhibition of anaphylactic	[43]
Clinopodium gracile	Water extract	Compound	mg/kg	reactions and histamine	[43]
(Benth.)		48/80-induced	Body	release dose dependently by	
Kuntze		systemic	weight,	modulating intracellular	
(Lamiaceae)			-	calcium.	
(Lannaceae)		anaphylaxis and	i.p.	calcium.	
		immunoglobulin			
		E-mediated			
		cutaneous			
		anaphylaxis.			
		<i>In-vitro</i> : Phorbol	1-100	Attenuation of gene	
		12-myristate 13-	µg/ml	expression and release of	
		acetate and		pro inflammatory cytokines	
		calcium		mediated by NF- KB.	
		ionophore			
		A23187-			
		stimulated			
		human mast			
		cells.			
Cressa cretica	Ethyl acetate	In-vitro:		Ethyl acetate fraction	[44]
			-		[44]
L.	and	Acetylcholine		showed more significant	
(Convolvulace	methanolic	and histamine		bronchodilatory and mast	
ae)	fraction	aerosol-induced		cell stabilizing activity	
		broncospasm			
		using guinea			
		pigs and egg			
		albumin and			
		compound 48/80			
		on isolated rat			
		peritoneal mast			
		cells.			
Curculigo	Alcoholic	In-vivo:	100-	Increase in total number of	[45]
orchiodes	extract	Compound	400	intact mast cells indicates its	
Gaertn.	entraot	48/80 induced	mg/kg	mast cell stabilizing	
(Amaryllidace		degranulation of	116/16	potential.	
ae)		rat peritoneal		potential	
aej		mast cells.			
Dracoconhalu	A		0.001	Reduced release of	[46]
Dracocephalu	Aqueous	In-vivo:			[46]
m argunense	extract	Compound	-1	histamine and pro	
Fisch. ex Link		48/80 induced	mg/g,	inflammatory mediators	
(Labiatae)		systemic	anally	from activated mast cells.	
		reaction in mice.			
Elaeocarpus	Petroleum	In-vitro: Rat	-	Mast-cell stabilizing activity	[47]
sphaericus	ether,	mesentric mast		с ,	
(Gaertn.) K.	benzene,	cell model			
Schum.	chloroform,				
Elaeocarpace	acetone and				
	ethanol				
ae	extracts				
[ni-h-town	EXIIdLIS				[40]
Eriobotrya	-	In-vitro:	-	Dose dependent inhibition of	[48]
japonica		Compound		histamine release and	
(Thunb.) Lindl		48/80-induced		systemic anaphylactic as well	
. (Rosaceae)		systemic		as PCA reaction.	
		anaphylactic			
		reactions and			
		serum histamine			
		release in mice			
		and IgE-			
		mediated			
1		passive			
		•			
		cutaneous anaphylaxis.			

Fagopyrum	Grain extract	In-vitro:	_	Potential anti allergic due to	[49]
esculentum	Grain extract	Compound	-	inhibition of histamine	[49]
Moench		48/80-induced		release and cytokine	
(Polygonacea		vascular		mediators.	
e)		permeability and			
		RPMC			
		degranulation.			
		In-vivo: Anti -			
		dinitrophenyl IgE			
		activated PCA			
		reaction.			
Forsythia	Methanolic	In-vitro:	1	Inhibition of histamine	[50]
koreana	extract	Compound	mg/ml	release from the RPMCs by	
(Nakai)		48/80 induced		13.8% and TNF-alpha, IL-6,	
T.B.Lee.		RPMC		and IL-8 production from	
(Oleaceae)		degranulation.		HMC-1 cells by 71.16%,	
				86.72% and 44.6%,	
				respectively.	
		In-vivo:	1 g/kg	Only 50% induced mortality	
		Compound		was seen.	
		48/80-induced			
		systemic			
		anaphylaxis and anti-			
		dinitrophenyl			
		IgE-induced PCA			
Ficus	Aqueous,	In-vivo: Clonidine	100	Inhibition of mast cell	[51]
bengalensis L.	ethyl acetate	induced mast	mg/	degranulation was variable	[]1]
(Moraceae)	extract and	cell	kg i.p.	ranging from 65-75%	
(moraccac)	methanol	degranulation.	N8p.	depending on type of	
	Extract			extract.	
Ficus religiosa	Aqueous	In-vivo:	150	Relieve bronchospasm and	[52]
L. (Moraceae)	extract	Histamine and	and	mast cell stabilizing activity	
, , , , , , , , , , , , , , , , , , ,		acetylcholine	300	с ,	
		induced	mg/kg		
		bronchospasm in			
		guinea pigs and			
		mast cell			
		stabilizing			
		activity			
Glyphaea	70%v/v	In-vivo: Systemic	30,	Inhibits the in vivo	[53]
brevis	aqueous	anaphylaxis	100,	degranulation of mast cells	
Monachino	ethanol stem	induced by	and	and thereby suppress allergy	
(Tiliaceae)	bark extract	compound	300	dose dependently and	
		48/80.	mg/kg	delaying the induced	
				mortalities the time for	
				compound 48/80-induced mortality.	
Isodon	Aqueous	In-vivo:	_	Dose dependent inhibition of	[54]
japonicus	extract	Compound	-	histamine release and	[54]
(Burm.f.)	CALIGUE	48/80 induced		induced systemic reaction.	
H.Hara		histamine			
(Labiatae)		release from			
, , , , , , , , , , , , , , , , , , , ,		RPMC and			
		systemic			
		anaphylaxis.			
Lycopus	Aqueous	In-vivo:	0.005-	Dose dependent reduction in	[55]
lucidus	extract	Compound	0.1	histamine release, inhibition	r 1
Turcz. ex Bent		48/80 induced	g/kg	of systemic anaphylaxis and	
h.		degranulation of	5, 0	PCA reaction.	
(Lamiaceae)		RPMC, systemic			
		anaphylaxis			

		PCA.			
Magnolia obovata Thunb. (Magnoliacea e)	Methanolic extract	In-vitro: Compound 48/80 induced histamine release.	-	Dose dependently inhibits histamine release.	[56]
Magnolia officinalis Rehder & Wilson (Magnoliacea e)	Aqueous extract	In vitro: RPMC activated by compound 48/80 or anti- dinitrophenyl or IgE.	0.001 to 1 mg/ml	Inhibit histamine release and TNF-α production dose dependently.	[57]
		In vivo: Compound 48/80 induced systemic anaphylactic reaction in rats and IgE mediated PCA reaction.	0.01 to 1 g/kg	Dose dependently inhibits histamine release, PCA and systemic anaphylaxis.	
Mallotus philippinensis (Lam.) Muell. Arg. (Euphorbiace ae)	Rottlerin	In-vivo: Passive cutaneous and passive systemic anaphylaxis mouse models, and anaphylactic contraction of bronchial rings isolated from sensitized guinea pigs.	-	Prevention of IgE-mediated cutaneous vascular extravasation, hypothermia, elevation in plasma histamine level and tracheal tissue mast cell degranulation in mice in a dose-dependent manner. Suppression of ovalbumin- induced guinea pig bronchial smooth muscle contraction and IgE-mediated immediate release of β-hexosaminidase from RBL-2H3 mast cells.	[58]
Ocimum sanctum L. (Lamiaceae)	Ethanolic extract Flavonoid fraction	In-vivo: Albino rats sensitized by horse serum along with triple antigen containing Bordetella pertusis.	100 and 200 mg/kg body weight 75 and 150 mg/kg body weight	Dose dependent inhibition of mast cell degranulation to an extent of 62.44 -67.24%. Dose dependent inhibition of mast cell degranulation to an extent of 54.62 and 60.48% respectively.	[59]
Perilla frutescens (L.) Britton (Lamiaceae)	Aqueous extract	In-vitro: RPMC activated by compound 48/80 or anti-DNP IgE. In-vivo: Systemic allergic reaction induced by compound 48/80 and local allergic reac tions activated	10-3 to 1 mg/ml 0.05 to 1 g/kg	Inhibits mast cell-mediated immediate-type allergic reactions <i>in-vivo</i> and <i>in-vitro</i> dose dependently.	[60]

November - December 2015 RJPBCS

		by anti-DNP IgE			
Phyllanthus emblica L. (Phyllanthace ae)	Methanolic extract	in rats. In-vitro: Compound 48/80-induced mast cell degranulation.	2, 4 and 6 mg/ml	Showed potent dose dependent inhibition of mast cell degranulation.	[61]
Pithecellobiu m clypearia Ben th (Fabaceae)	Polyphenol- rich ethanol extract	In-vitro: Compound 48/80 induced histamine from rat peritoneal mast cells		Significant inhibition effect on histamine release.	[62]
	Seven main polyphenols (including (-)- epigallocatech in-7-gallate), (-)-5, 7, 3', 4', 5'- pentahydroxyf lavan), and (-)- tetra hydroxyflavan -7-gallate)	In-vivo: Croton oil-induced ear edema, carrageenan- induced paw edema and DNFB-induced delayed hypersensitivity reaction		Anti-inflammatory and anti- allergic activities	
	Ethanol extract	In-vitro: Compound 48/80 induced histamine from rat peritoneal mast cells		Concentration-dependent reduction in histamine release from rat peritoneal mast cells and increased intracellular cAMP content of rat mast cells	
Plumbago zeylanica L. (Plumbaginac eae)	Ethanol extract; Hydro alcoholic 70% v/v	In-vitro: Compound 48/80 induced activation of rat mesenteric cells. In-vivo: Systemic	10 and 100 μg/ml 500,	Inhibit mast cell derived immediate type allergic mast cell degranulation. Inhibits mast cell-dependent	[63]
		anaphylactic shock induced by compound 48/80 in mice	1000 mg/kg, p.o.	immediate allergic reactions	
Pothos scandens L. (Araceae)	Aqueous extract	In-vitro: Compound 48/80–induced histamine release RPMC	1, 10, 100 μg/ml	Dose dependently inhibits histamine release	[64]
Prunella vulgaris L.(Labiatae)	Aqueous extract	In-vivo: Compound 48/80-induced systemic anaphylaxis and serum histamine release in mice	0.001- 0.1 g/kg	Mast cell stabilizing and antiinflammatory	[65]
Punica granatum L. (Lythraceae)	Extract and its ellagic acid rich fraction	In-vivo: Dextran sulfate sodium induced ulcerative colitis in mice	100 and 200 mg/kg p.o.	Attenuated the dextran sulfate sodium induced rise in colonic histamine level	[66]

Dandi-	Ethylasstate	In vive	100	Inhibited contractions and	[67]
Randia dumetorum (Retz.) Poir. (Rubiace ae)	Ethyl acetate and methanol extr acts	In-vivo: Acetylcholine and histamine induced contraction and	100 mg/kg	Inhibited contractions and experimentally induced inflammation. Antioxidant and decrease in histamine release.	[67]
407		Compound 48/80 induced mast cell degradation			
Rehmannia glutinosa (Gaertn.) Steu d. (Phrymaceae)	-	In-vivo: Compound 48/80 induced systemic anaphylactic shock.	0.0001 -1 g/kg	Exhibited significant dose dependent mast cell stabilizing potential.	[68]
Rosa davurica Pall. (Rosaceae)	-	In-vitro: Compound 48/80 and IgE- mediated histamine release from RPMC	0.0001 to 1 g/kg	Inhibited histamine release at concentrations from 0.001 to 1 μg/ml	[69]
		In-vivo: Compound 48/80 activated systemic anaphylaxis in mice.		Dose dependently reduced mortality	
Rhus javanica L. (Anacardiace ae)	Aqueous extract	In-vitro: Compound 48/80-induced or IgE-medated histamine release from RPMC	0.001– 0.1 mg/ml	Dose-dependently inhibited compound 48/80-induced or IgE-mediated histamine release from RPMC.	[70]
		In-vivo: Compound 48/80-induced systemic allergic reaction	1 to 100 mg/kg, i.p.	Significant anti allergic action possibly due to inhibition of histamine release.	
Rubus suavissimus S. Lee (Rosaceae)	Aqueous extract	In-vitro: Compound 48/80 activated RPMC.	0.001 to 1 mg/ ml	Dose dependent inhibition of histamine release from peritoneal mast cells and systemic anaphylaxis indicates its potential to treat immediate-type allergic reaction.	[71]
Sanguisorba officinalis L. (Rosaceae)	Aqueous extract	In-vitro: Compound 48/80 or anti- DNP IgE-induced induced RPMC activation.	0.001 to 1 mg/mL	Significant inhibition of histamine in both <i>in-vitro</i> model	[72]
		In-vivo: Systemic allergic reaction induced by compound 48/80 in mice	0.01 to 1 g/kg	Pretreatment with extract reduced mortality in mice dose dependently	

<u> </u>			50 500		[=0]
Schinus terebinthifoli	Aqueous extract, ethyl	In-vitro: RPMC	50-500 μg/ml	Pretreatment with the fraction and compounds	[73]
us Raddi	acetate	activation by compound 48/80	extract	reduced histamine release	
(Anacardiace	fraction, gallic	and IgE	and its	significantly	
•	-	anuige		Significantly	
ae)	acid, methyl		fractio		
	gallate,		n; 100		
	1,2,3,4,6-		µg/ml		
	pentagalloyl		compo		
	glucose		unds		
			from		
			fractio		
			n		
Schizonepeta	Aqueous	In-vitro:	-	Dose dependently inhibited	[74]
tenuifolia	extract	Compound		compound 48/80-induced or	
Briq		48/80 and IgE -		IgE-mediated histamine	
(Lamiaceae)		mediated		release	
		histamine			
		release from			
		RPMC			
		In-vivo:	0.005	100% reduction in mortality	
		Compound	to 1	was achieved with all the	
		48/80 induced	g/kg	test doses	
		systemic	0, 0		
		anaphylaxis in			
		rats			
Scrophularia	70% Ethanolic	In-vitro: RBL -	-	Inhibited the release of β-	[75]
buergeriana	extract	2H3 mast cells.		hexosaminidase and	[,0]
Miq.(Scrophu	extruct	Ling must cens.		histamine along with	
lariaceae)				suppression of cytokine	
lanaccacj				expression particularly that	
				of TNF - α and interleukin-4.	
Selaginella	70% Ethanolic	In-vitro:	50, 100	Significant inhibition of	[76]
tamariscina		Histamine	and	histamine in both <i>in-vitro</i>	[/0]
	extract		200 μg/		
(P.Beauv.)		release induced	200 μg/ ml	tests. The extract (200 μg/ml) also normalize the	
Spring (Selaginellace		by compound	m	cAMP levels in RPMC	
		48/80 or ovalbumin from		CAIVIP IEVEIS III RPIVIC	
ae)					
		RPMC	500	Durature at a state with a star at	
		In-vivo: Systemic	500	Pretreatments with extract	
		anaphylactic	and	reduced dose-dependently	
		shock induced by	1000	mortality rate upto 40%	
		compound 48/80	mg/kg		
		in mice			_
Solanum	Petroleum	In-vitro:	50,100	Petroleum ether extract	[77]
<i>nigrum</i> L.	ether, ethanol	Clonidine	and	show maximum protection	
(Solanaceae)	and aqueous	induced mast	200	against mast cell	
	extracts	cell	mg/kg,	degranulation dose	
		degranulation in	i.p.	dependently as compared to	
		isolated		other extracts.	
		peritoneal fluid			
		from mice			
Sphaeranthus	Different	In-vivo:	100,	Ethanol and ethyl acetate	[78]
, indicus L.	extracts	Compound	150	extracts show potent mast	
(Asteraceae)		48/80 and sheep	and	cell stabilizing effects	
. ,		serum	300	5	
		induced mast	mg/kg		
		cell degranulatio			
		n model			
Stachys	Aqueous	In-vivo: PCA	-	Significant inhibition of rat	[79]
riederi	extract	activated by anti-	-	peritoneal mast cell	[19]
	Extract			-	
(Ledeb.) H. Hara		DNP IgE; Compound		degranulation and anaphylaxis reaction	
	1	LOMDOUND	1	anadoviaxis reaction	
(Labiatae)		48/80 or anti-		anaphylanis reaction	

November - December 2015 RJPBCS

		DNP IgE-induced induced RPMC activation.			
Syzygium cumini (L.) Skeels (Myrtaceae)	Aqueous extract	In-vitro: Compound 48/80 induced histamine release from RPMC	1 μg/ml	Show 49.5% inhibition of histamine release	[80]
Teucrium japonicum Houtt. (Lamiaceae.)	Aqueous extract	In-vitro: Compound 48/80 induced histamine release from RPMC	0.001 to 1 mg/ml	Inhibit histamine release thus inhibiting mast cell mediated allergic reactions by modulating intracellular calcium, TNF-alpha, and NF- KB.	[81]
		In-vivo: Compound 48/80-induced systemic anaphylaxis; IgE mediated PCA reaction	1000 mg/kg		
Tinospora cordifolia Willd. (Menisperma ceae)	Aqueous extract	In-vitro: Compound 48/80 and anti- DNP IgE induced histamine release from RPMC. In-vivo: Compound 48/80 induced systemic reaction in mice	0.01 to 10 mg/ml	Concentration dependent inhibition of histamine release and induced mortality indicating its efficacy in various acute and chronic allergic disorders.	[82]
Vigna angularis (Willd.) Ohwi & Ohashi (Fabac eae)	95 % ethanol extract	In-vitro: Phorbol 12-myristate 13- acetate and calcium ionophore A23187 induced histamine release from human mast cell line (HMC-1 cells) In-vivo: Compound 48/80 induced	- 10, 50 and 250	Dose dependently inhibits histamine release and systemic anaphylaxis	[83]
		systemic anaphylaxis in mice	250 mg/kg		
Vitis amurensis Rupr (Vitaceae)	70% methanol extract	In-vitro: Compound 48/80 induced and IgE- mediated histamine release form RPMC	0.001– 1 mg/ml	Dose dependent reduction in mice mortality upto 80%	[84]

		In-vivo:	1 -		
		Compound	1000		
		48/80–induced	mg/kg		
		systemic	0, 0		
		reaction in mice			
Vitex	Ethylacetate	In-vivo: PCA	200	Potent anti-allergic effect as	[85]
negundo L.	extract and its	induced in rat.	mg/kg	indicated by reduced leakage	
(Verbenaceae	various			of dye. Active compound	
)	fraction			was found to be 5-hydroxy-	
				3, 6, 7, 3', 4'-pentamethoxy	
				flavone.	
Xanthium	Aqueous	In-vitro:	0.01-1	Dose dependent inhibition of	[86]
strumarium L.	extract	Compound	mg/ml	histamine release	
(Asteraceae)		48/80 induced			
		degranulation of			
		mesenteric mast			
		cells.			
		In-vivo:	10 to	Mortality was reduced upto	
		Compound	1000	0% in dose dependent	
		48/80-induced	mg/kg	manner	
		systemic			
		anaphylaxis			
Zizypus	95% ethanol	In-vivo: PCA and	250,	Pretreatment with extract	[87]
mauritiana	extract	compound 48/80	500	reduced dose dependently	
Lam.		induced mast	and	passive cutaneous reaction	
(Rhamnaceae		cell	1000	and histamine release in rat	
)		degranulation in	mg/kg	peritoneal fluid	
		rats			

HMC- Human mast cells; LD50- Lethal dose; RPMC- Rat peritoneal mast cells; PCA- passive cutaneous anaphylaxis; IgE- Immunoglobulin E; IC50¬- Inhibitory concentration at which 50% inhibition occur; IL-interleukin; DNP- Dinitro phenol; TNF-α – Tumour necrosis factor; cAMP- cyclic adenosine monopohosphate

RESULTS AND DISCUSSION

Plant polyphenols are reported to have anti-inflammatory activity and inhibitory effect against histamine release [8,9]. Plants containing flavonoids have been reported to possess antihistaminic and antiallergic effect [10, 11]. Quercetin, a ubiquitous flavonoid, has been reported to inhibit phospholipase A (responsible for liberating arachidonic acid from membrane phospholipids), lipoxygenase (responsible for converting arachidonic acid into leukotrienes) [12], platelet aggregation, and mast cell and basophil degranulation [13,14]. Quercetin has also been shown to bind to calcium/calmodulin complexes thus preventing the influx of calcium into mast cells and basophils necessary for degranulation of mast cells [15]. Moreover polyphenols have significant antioxidant effect that counters the production of oxygen free radicals which are reported to be involved in the pathogenesis of numerous disorders including mast cell degranulation [16,17].

In the past two decades numerous plants have been investigated for management of allergic/ immune disorders involving mast cells degranulation (Table-1). *In-vitro* and *in-vivo* models have been developed to determine the mast cell functions [18]. *In-vitro* tests involve use of cell lines and isolated mast cells. Mast cells are isolated from bone marrow or from rodent peritoneal cavities; these are called bone marrow mast cells (BMMC) or peritoneal cavity mast cells (PCMC) respectively. PCMC are preferred since these retain their morphology and function and release histamine when exposed to mast cell activators [19]. Mast cells may also be isolated from embryonic stem cells [20]. These isolated cells are exposed to mast cell activators/ degranulators like Compound 48/80, specific allergens, IgE, NSAIDS, iodine containing dyes etc. Compound 48/80 (a polymer formed by condensation of N-methyl-p-methoxyphenethylamine with formaldehyde) is frequently employed in *in-vitro* models as it is causes significant release of histamine from mast cells. The prevention of histamine release from the mast cells is an index of mast cell stabilization [21]. *In vivo* models involve antigen-induced (for example use of egg albumen, horse serum etc) challenge of mast cells. Subsequently hematological parameters are evaluated or after sacrificing animals the mesentery is

collected, stained with 0.1% toluidine blue observed microscopically to calculate percent intact and disrupted mast cells [22]. KIT-mutant mice have also been developed to further explore the functions of mast cells [23].

In conclusion, mast cell stabilization is a complex phenomenon. Polyphenols with their multi-target functioning may thus be suitable candidates for prevention of mast cell degranulation. The large number of plants described in this review clearly demonstrated the importance of plants rich in polyphenols in the mast cell stabilization, although the mechanism of action is not clearly elucidated for many plants / plant extracts showing mast cell stabilizing activity. Thus the need of the hour is methodical evaluation of the plants that have shown mast cell stabilizing potential with a precise goal of developing plant polyphenols as effective and safe mast cell stabilizers.

REFERENCES

- [1] Holdsworth SR, Summers SA. J Am Soc Nephrol 2008; 19: 2254-2261.
- [2] Berridge MJ. Cell Signal Biol 2012; 11: 11.1-11.28.
- [3] Kobayashi H, Ishizuka T, Okayana Y. Clin Exp Allergy 2000; 30: 1205-1212.
- [4] Galli SJ, Wedemeyer J, Tsai M. Int J Hematol 2002; 75: 363-369.
- [5] Theoharides TC, Enakuaa S, Sismanopoulos N, Asadi S, Papadimas EC, Angelidou A, Alysandratos KD. Annals Aller Asthma Immunol 2012; 109: 9-14.
- [6] Kuzemko JA. Respir Med 1989; 83: 15-6.
- [7] Finn DF, Walsh JJ. Br J Pharmacol 2013; 170: 23-37.
- [8] Benavente-Garcia O, Castillo J, Marino FR, Ortuno A, Rio JA. J Agric Food Chem 1997; 45: 4505-4515.
- [9] Yamada K, Shoji K, Mori M, Ueyama T, Matsuo N, Oka S, Nishiyama K, Sugano M. *In Vitro* Cell Dev Biol-Animal 1999; 35:169-174.
- [10] Havsteen B. Biochem Pharmacol 1983; 32: 1141-1148.
- [11] Tripathi S, Bruch D, Kittur DS. BMC Complement Alt Med 2008; 8: 1.
- [12] Yoshimoto T, Furukawa M, Yamamoto S, Horie T, Watanabe-Kohno S. Biochem Biophy Res Comm 1983; 116: 612-618.
- [13] Middleton E Jr, Drzewiecki G, Krishnarao D. J Immunol 1981; 127: 546-550.
- [14] Otsuka H, Inaba M, Fujikura, T, Kunitomo M. J Aller Clin Immunol 1995; 96: 528-536.
- [15] Fewtrell CM, Gomperts BD. Biochim Biophys Acta 1977; 469: 52-60.
- [16] Pandey KB, Rizvi SI. Oxid Med Cell Longev 2009; 2: 270-278.
- [17] Ginter E, Simko V, Panakova V. Bratisl Lek Listy 2014; 115: 603-606.
- [18] Reber LL, Marichal T, Galli SJ. Trends Immunol 2012; 33: 613-625.
- [19] Malbec O, Roget K, Schiffer C, Iannascoli B, Dumas AR, Arock M, Daëron M. J Immunol 2007; 178: 6465-6475.
- [20] Tsai M, Wedemeyer J, Ganiatsas S, Tam SY, Zon LI, Galli SJ. Proc Natl Acad Sci U S A 2000; 97: 9186-9190
- [21] Okayama Y, Benyon RC, Lowman MA, Church MK. Allergy 1994; 49: 246-253.
- [22] Patel J, Shah S, Deshpande S, Shah G. Asian J Pharm Clin Res 2009; 2:81-86.
- [23] Reber LL, Marichal T, Galli SJ. Trends Immunol 2012; 33: 613-625.
- [24] Taur DJ, Patil RY. Asian Pac J Trop Med 2011; 4: 46-49.
- [25] Yi JM, Kim MS, Seo SW, Lee KN, Yook CS, Kim HM. Clinica Chimica Acta 2001; 312: 163-168.
- [26] Jeong HJ, Koo HN, Myung NI, Shin MK, Kim JW, Kim DK, Kim KS, Kim HM, Lee YM. Immunopharmacol Immunotoxicol 2001; 23: 107-17.
- [27] Behera JP, Mohanty B, Ramani YR, Rath B, Pradhan S. Indian J Pharmacol 2012; 44: 614-618.
- [28] Kumar D, Bhat ZA, Singh P, Revista SS, Khatanglakar V. Brasileirade Farmacognosia 2011; 21.
- [29] Shashidhara S, Bhandarkar AV, Deepak M. Fitoterapia 2008; 79: 301-302.
- [30] Venkatesh P, Mukherjee PK, Kumar NS, Bandyopadhyay A, Fukui H, Mizuguchi H, Islam N. Immunopharmacol Toxicol 2010; 32: 272-276.
- [31] Kaiser P, Youssouf MS, Tasduq SA, Singh S, Sharma SC, Singh GD, Gupta VK, Gupta BD, Johri RK. J Med Food 2009; 12: 374-382.
- [32] Kim SH, Shin TY. Exp Biol Med 2005; 230: 681
- [33] Chitme HR, Malipatil M, Chandrashekhar VM, Prashant PM. Indian J Exp Biol 2010; 48: 416-452
- [34] Kim SH, Choi CH, Kim SY, Eun JS, Shin TY. Exp Biol Med (Maywood) 2005; 230: 82
- [35] Mali RG, Dhake AS. J Herbs, Spices Med Plants 2011; 17: 268-274.

- [36] Venkatesh P, Mukherjee PK, Mukherjee D, Bandyopadhyay A, Fukui H, Mizuguchi H. Pharm Biol 2010;48: 1213-1217
- [37] Sreejith G, Latha PG, Shine VJ, Anuja GI, Suja SR, Sini S, Shyama S, Pradeep S, Shikha P, Rajasekharan S. Ind J Exp Biol 2010; 48: 494-498.
- [38] Singh B, Nadkarni JR, Vishwakarma RA, Bharate SB, Nivsarkar M, Anandjiwala S. J Ethnopharmacol 2012; 141: 469-473.
- [39] Lee JH, Seo JY, Ko NY, Chang SH, Her E, Park T, Lee HY, Han JW, Kim YM, Choi WS. J Ethnopharmacol 2004; 95: 425-430.
- [40] Kim HM, Kim HW, Lyu YS, Won JH, Kim DK, Lee YM, Morii E, Jippo T, Kitamura Y, An NH. Pharmacol Res 1999; 40: 61-65.
- [41] Quilez AM, Saenz MT, Garcia MD, Puerta R. J Pharm Pharmacol 2004; 56: 1185-1189.
- [42] Vadnere GP, Somanib RS, Singhai AK. Pharmacologyonline 2007; 1: 487-494.
- [43] Park SB, Kim SH, Suk K, Lee HS, Kwon TK, Ju MG, Jeon H, Kim DK, Lim JP, Shin TY. Exp Biol Med (Maywood) 2010; 235: 606-13.
- [44] Priyashree S, Jha S, Pattanayak SP. Asian Pac J Trop Med 2012; 5: 180–186.
- [45] Venkatesh P, Mukherjee PK, Kumar S, Nemaa NK, Bandyopadhyay A, Fukuic H, Mizuguchi H. J Ethnopharmacol 2009, 126: 434-436.
- [46] Kim SH, Kim SH, Kim SH, Moon JY, Park WH, Kim CH, Shin TY. Biol Pharm Bull 2006; 29: 494-498.
- [47] Singh RK, Bhattacharya SK, Acharya SB. Phytomedicine 2000; 7: 205-207.
- [48] Kim SH, KwonYE, Park WH, Jeon H, Shin TY. Immunopharmacol Immunotoxicol 2009; 31: 314-319.
- [49] Kim CD, Lee WK, No KO, Park SK, Lee MH, Lim SR, Roh SS. Int Immunopharmcol 2003; 3: 129-136.
- [50] Choi IY, Moon PD, Koo HN, Myung NY, Kim SJ, Lee JH, Han SH, Moon G, Seo SY, Sung HJ, Park RK, Jeong HJ, Um JY, Kim HM, Hong SH. *In Vitro* Cell Dev Biol Anim 2007; 43: 215-221.
- [51] Taur DJ, Patil RY, Nirmal SA. J Herbal Med Toxicol 2010; 4: 157-160.
- [52] Kapoor M, Jasani N, Acharya N, Acharya S, Kumar V. Asian Pac J Trop Med 2011; 4: 642-644.
- [53] Obiri DD, Osafo N, Abotsi RE. ISRN Pharmacol 2013; 874263.
- [54] Kim SY, Choi YG, Kim SH, Shin HY, Moon KA, Kim HM, Shin TY. Immunopharmacol Immunotoxicol 2004; 26: 273-284.
- [55] Shin TY, Kim SH, Suk J, Hab JH, Kim I, Lee MG, Jun CD, Kim SY, Lim JP, Eun JS, Shin HY, Kim HM. Toxicol Applied Pharmacol 2005; 209: 255-262.
- [56] Ikarashi Y, Yuzurihara M, Sakakibara I, Nakai Y, Hattori N, Maruyama Y. Planta Medica 2001; 67: 709-713.
- [57] Shin TY, Kim DK, Chae BS, Lee EJ. Arch Pharm Res 2001; 24: 249-255.
- [58] Chan TK, Ng DS, Cheng C, Guan SP, Koh HM, Wong WS. Phytomedicine 2013; 20: 853-60.
- [59] Choudhary GP. Int J Pharma Bio Sc 2010; 1: 1-11.
- [60] Shin TY, Kim SH, Kim SH, Kim, YK, Park HJ, Chae BS, Jung HJ, Kim HM. Immunopharmacol Immunotoxicol 2000; 22: 489-500.
- [61] Babaria P, Desai S, Shah K, Paranjape A. Int J Pharm Sci Rev Res 2012; 17: 36-41.
- [62] Bao L, Xinsheng Y, Jiekun X, Xiaoyu G, Hongwei L, Hiroshi K. Fitoterapia 2009; 80: 349-353.
- [63] Dai Y, Hou LF, Chan YP, Cheng L, But PP. Biol Pharm Bull 2004; 27: 429-32.
- [64] Gupta S, Duraiswamy B, Satishkumar MN. Ind J Pharmacol 2013; 45: 83-86.
- [65] Kim SY, Kim SH, Shin HY, Lim JP, Chae BS, Park JS, Hong SG, Kim MS, Jo DG, Park WH, Shin TY. Exp Biol Med (Maywood) 2007; 233: 921.
- [66] Singh K, Jaggi AS, Singh N. Phytother Res 2009; 23: 1565-74.
- [67] Ghante MH, Bhusari KP, Duragkar NJ, Jain NS, Warokar AS. Acta Pol Pharm 2012; 69: 465-474.
- [68] Kim H, Lee E, Lee S, Shin T, Kim Y, Kim J. Int J Immunopharmacol 1998; 20: 231-240.
- [69] Kim HM, Park YA, Lee EJ, Shin TY. J Ethnopharmacol 1999; 67: 53-60.
- [70] Kim SH, Park HH, Lee S, Jun CD, Choi BJ, Kim SY, Kim SH, Kim DK, Park JS, Chae BS, Shin TY. Int Immunopharmacol 2005; 5: 1820-1829.
- [71] Fang YG, Lu HW, Feng JH, Bao L, Kurihara H. Zhong Yao Cai 2008; 31: 704-710.
- [72] Shin TY, Lee KB, Kim SH. Immunopharmacol Immunotoxicol 2002; 24: 455-468.
- [73] Cavalher-Machado SC, Rosas EC, Brito FA, Heringe AP, Oliveira RR, Kaplan MA, Figueiredo MR, Henriques Md. Int Immunopharmacol J 2008; 8: 1552-1560.
- [74] Shin TY, Jeong HJ, Jun SM, Chae HJ, Kim HR, Baek SH, Kim HM. Immunopharmacol Immunotoxicol 1999; 21: 705-15.
- [75] Kim JK, Kim YH, Lee HH, Lim SS, Park KW. Inflamm 2012; 35: 183-191.
- [76] Dai Y, But PP, Chu LM, Chan YP. Am J Chin Med 2005; 33: 957-966.

- [77] Nirmala SA, Patel AP, Bhawarb SB, Pattan SR. J Ethnopharmacol 2012; 142: 91-97.
- [78] Mathew JE, Srinivasan KK, Dinakaran V, Joseph A. J Ethnopharmacol 2009; 122: 394-396.
- [79] Shin TY. Immunopharmacol Immunotoxicol 2004; 26: 621-630.
- [80] Brito FA, Cavalher-Machado SC, Lima LA, Ramos MFS, Nakamura MJ, Siani AC, Henriques MG, Sampaio AL. Braz J Med Biol Res 2007; 40: 105-115.
- [81] Kim SH, Park SB, Kang SM, Jeon H, Lim JP, Kwon TK, Park WH, Kim HM, Shin TY. Food Chem Toxicol 2008; 47: 398-403.
- [82] Zalawadia R, Gandhi C, Patel V, Balaraman R. Pharm Biol 2009; 47: 1096-1106.
- [83] Kim HH, Kim SW, Kim DS, Oh HM, Rho MC, Kim SH. Int J Mol Med 2013; 32: 736-742.
- [84] Kim SH, Kwon TK, Shin TY. Exp Biol Med 2008; 233: 192-199.
- [85] Patel IJ, Shrikalp SD. Anti-Inflamm Anti-Aller Agents Med Chem 2011; 10: 442-451.
- [86] Hong SH, Jeong HJ, Kim HM. J Ethnopharmacol 2003; 88: 229-34.
- [87] Naik SR, Bhagat S, Priyank D, Shah A, Ingawalea D, Raju, R. Rev Bras Farmacogn 2013; 23: 811-818.