

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

A Simple and Convenient Synthesis of Novel Thiopyrimidine Derivatives as Anticancer Agents

Afaf KE El-Ansary¹, Neama A Mohamed², Khaled O Mohamed¹, Hend MW Abd-Elfattah², and Mai El-Manawaty³.

¹Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
 ²Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
 ³Microbiology and immunology Department, National Research Centre, Dokki, Cairo, Egypt.

ABSTRACT

The starting thiopyrimidine carbonitrile derivatives 1a, b were synthesized via the reaction of phenylthiourea, ethylcyanoacetate and appropriate aromatic aldehydes namely 2-thiophenaldehyde and verateraldehyde. Chlorination of compounds 1a,b by phosphorus oxychloride and phosphorus pentachloride gave compounds 2a, b, which were subjected to react with anthranilic acid, glycine and sodium azide afforded compounds 3a, b, 4a, b and 5a, b respectively. While reaction of compounds 2a, b with some aromatic amines or hydrazine hydrate furnished compounds 6a-d and 7a, b respectively. Structures of all synthesized compounds were elucidate using IR,¹H-NMR and Mass spectroscopes. Some of the newly synthesized analogues were chosen to evaluate their in-vitro cytotoxic activity against human liver carcinoma cell lines (HEPG2), human breast mammary gland adenocarcinoma cell lines (MCF7), prostate cancer (PC3). The obtained data revealed that some of the tested derivatives especially 6d has high potency against MCF7, while on the other hand it has good activity against PC3, while 3a and 6b exhibited good activity against MCF7 and HepG2 respectively, on the other hand, 1a have moderate activity against MCF7. **Keywords:** Thiopyrimidin, HEPG2, MCF7, PC3, cytotoxic activity.

*Corresponding author

INTRODUCTION

Pyrimidines are of chemical and pharmacological interest [1, 2] and compounds containing the pyrimidine ring system have been shown to possess antitumor, antibacterial, antifungal, antimalarial and anticonvulsant activities[1-5]. Some are valuable drugs for the treatment of hyperthyroidism, acute leukemia children and adult granulocytic leukemia[5]. Furthermore, several pyrimidines are used in polymer and supramolecular chemistry]6, 7]. Conjugated molecules which have a pyrimidine core as the key unit have received much attention and they are prospective candidates for light emitting devices[8] and molecular wires[9]. After the invention of 5-fluorouracil as an antimetabolite of uracil¹⁰ it has become one of the most widely used antineoplastic agents. Analogously, some 5-halogenated thiouracil¹¹ were synthesized and screened for anticancer activity. It has been reported that the tested compounds have comparable activity of that of uracil[12]. From 1961-1995 different research laboratories investigated the anticancer activity of some 5-substituted-2-thiouracil[13-16] reported that the tested compounds were found to inhibit DNA synthesis. We reported here the synthesis of novel thiouracil derivatives based on the diverse medicinal uses and biological activities of thiouracil as anticancer[17-19] Based on this finding it was of interest to synthesis and evaluation of chemotherapeutic activity of a number of 6-substituted-4-oxo-2-thio-1,2,3,4tetrahydropyrimidines (2-thiouracils). In view of the biological significance of 2-thiouracils, we became interested in obtaining some new compounds derived by substitutions of 2-thiouracils at different positions.

Scheme:

Ar = 2-thiophenyl , 3,4-dimethoxyphenyl Ar¹= 2-furfuryl , 4-bromophenyl

July-August

MATERIAL AND METHODS

Chemistry

All melting points are uncorrected and were recorded on an open glass capillary tubes using an Electrothermal IA 9100 digital melting point apparatus. Elemental microanalyses were carried out at Micro analytical Unit. Central Services Laboratory, National Research Centre, Dokki, Cairo. Egypt, using Vario Elementar and were found within $\pm 0.5\%$ of the theoretical values. Infrared spectra were recorded on a Jasco FT/IR-6100, Fourier transform, Infrared spectrometer (Japan) at cm⁻¹ scale using KBr disc technique at Central Services Laboratory. National Research Centre, Dokki, Cairo, Egypt. ¹H-NMR spectra were determined in using a JEOI EX-270 NMR spectrometer (Japan) at Central Services Laboratory. National Research Centre, Dokki, Cairo, Egypt. The mass spectra were measured with a Finnigan MAT SSQ-7000 mass spectrometer at Central Services Laboratory, Cairo University, Giza, and Cairo, Egypt. Follow up of the reactions and checking the purity of the compounds were made by TLC on silica gel precoated aluminium sheets (Type 60, F 254, Merck, Darmstadt Germany) and the spots were detected by exposure to UV analysis lamp at λ 254/366 nm for few seconds.

General procedure for synthesis of thiopyrimidin -5- carbonitrile derivatives 1a, b.

A mixture of phenyl thiourea (0.1 mol), ethyl cyanoacetate (0.1 mol) and the appropriate aromatic aldehydes namely 2-thiophenaldehyde and verateraldehyde was refluxed in absolute ethanol in presence of potassium carbonate for 48 hrs. The reaction mixture was poured onto ice cold-water. The precipitate was filtered off, dried then crystallized from the proper solvent to give compounds **Ia**, **b** respectively.

1,2,3,4-Tetrahydro-4-oxo-1-phenyl-6-(thiophen-2-yl)-2-thioxopyrimidin-5-carbontrile (1a)

Yield (79%); mp 142-145°C; Cryst.(Ethanol); IR (KBr) V_{max}/cm^{-1} : 3280(NH), 3067,3002 (CH aromatic), 2218(C=N), 1713(C=O), 1585(C=C), 1266(C=S).¹H-NMR (DMSO-d₆, δ ppm): 7.10-8.13 (m,8H,H aromatic and H thiophen), 10.40 (s,1H,NH exchangeable with D₂O); MS m/z (%): 311 (M⁺, 83.15), 308(M⁺-3, 58.43). Anal. Calcd for C₁₅H₉N₃OS₂ (311.38): C, 57.86; H, 2.91; N, 13.49; Found: C, 57.93; H, 3.21; N, 13.60

1,2,3,4-Tetrahydro-4-oxo-1-phenyl-6-(3,4-dimethoxyphenyl)-2-thioxopyrimidin-5 carbontrile (1b).

Yield (81%); mp 179-181°C; Cryst.(Iso-propanol); IR (KBr) V_{max}/cm^{-1} : 3423 (NH), 3072,3035 (CH aromatic),2997,2964 (CH aliph), 2221 (C=N), 1685.79 (C=O), 1610.56 (C=N), 1155 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.70 (s,3H,OCH₃), 3.80 (s,3H,OCH₃), 6.85-7.73 (m,8H,H aromatic), 11.20(s,1H,NH exchangeable with D₂O); MS *m/z*(%): 366 (M⁺+1, 5.7), 365 (M⁺, 11.), 193(100). Anal. Calcd for C₁₉H₁₅N₃O₃S (365.45): C, 62.45; H, 4.14; N, 11.53; Found: C, 62.52; H, 4.30; N, 11.76.

General procedure for synthesis of 4-chlorothiopyrimidine derivatives 2a, b.

A mixture of compounds **1a**, **b** (0.01 mol) and phosphorus pentachloride (0.01 mol) in phosphorusoxychloride (20 ml) was heated on a steam bath for 3 hrs. Then reaction mixture poured gradually onto crushed ice. The precipitate was filtered off, dried then crystallized from the proper solvent to give the corresponding compounds **2a**, **b**, respectively.

4-Chloro-1,2-dihydro-1-phenyl-6-(thiophen-2-yl)-2-thioxopyrimidin-5-carbonitrile(2a).

Yield (68%); mp 90-93°C; Cryst.(Acetone); IR (KBr) V_{max}/cm^{-1} : 3066 (CH aromatic), 2215 (C=N), 1645 (C=N), 1157 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 7.14-7.99 (m,8H, H aromatic and H thiophen).; MS m/z(%):330(M⁺+1, 15.70), 329 (M⁺, 20), 179(100). Anal. Calcd for C₁₅H₈ClN₃S₂ (329.83): C, 54.62; H, 2.44; N, 12.74; Found: C, 54.35; H, 2.01; N, 12.21.

4-Choloro-1,2-dihydro-1-phenyl-6-(3,4-dimethoxyphenyl)-2-thioxopyrimidin-5-carbonitrile (2b).

Yield (70%); mp 119-121°C; Cryst.(Chloroform); IR (KBr) V_{max}/cm⁻¹: 3066(CH aromatic),2935,2839 (CH aliph), 2220 (C≡N), 1630 (C=N), 1265 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.85 (s,6H,2OCH₃), 6.73-7.75 (m,8H,H

aromatic); MS *m/z*(%):385(M⁺+2, 10.9),383.87 (M⁺, 10.1). Anal. Calcd for C₁₉H₁₄ClN₃O₂S (383.85): C, 59.45; H, 3.68; N, 10.95; Found: C, 59.12; H, 3.34; N, 10.53.

General procedure for synthesis of thiopyrimidoquinazoline derivatives 3a, b.

A mixture of compounds **2a**, **b** (0.01 mol) and anthranilic acid (0.015 mol) in (30 ml) n-butanol was heated under reflux for 12 hrs. The solid obtained after cooling was crystallized from the suitable solvent to give compounds **3a**, **b**.

2,10-Dihydro-10-oxo-2-phenyl-3-(thiophen-2-yl)-1-thioxo-1*H*-pyrimido[6,1-*b*] quinazolin-4-carbonitrile (3a).

Yield (69%); mp 210-213°C; Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3093,3039 (CH aromatic), 2216 (C=N),1685(C=O),1620 (C=N), 1234 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 6.50-8.05 (m,12H, H aromatic and H thiophene); MS m/z(%): 412.49 (M⁺, 0.11), 162(100). Anal. Calcd for C₂₂H₁₂N₄OS₂ (412.49): C, 64.06; H, 2.93; N, 13.58; Found: C, 64.31; H, 3.21; N, 13.79.

2,10-Dihydro-10-oxo-2-phenyl-3-(3,4-dimethoxyphenyl)-1-thioxo-1*H*-pyrimido[6,1-*b*]quinazolin-4-carbonitrile (3b).

Yield (67%); mp 137-139°C;Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3140 (CH aromatic),2917,2845 (CH aliph), 2218 (C=N), 1692 (C=O), 1635 (C=N), 1245 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.87, 3.88 (2s,6H,2OCH₃), 7.27-7.92 (m,12H,H aromatic); MS m/z(%): 466 (M⁺, 5.96), 468(M⁺², 1.20). Anal. Calcd for C₂₆H₁₈N₄O₃S (466.51): C, 66.94; H, 3.89; N, 12.01; Found: C, 66.38; H, 3.28; N, 11.73.

General procedure for synthesis of imidazopyrimidincarbonitrile derivatives 4a, b.

A mixture of compounds **2a**, **b** (0.01 mol) and glycine (0.01 mol) in n-butanol (30 ml) was heated under refluxed for 3 hrs. The solid separated was refluxed with glacial acetic acid (5 ml) for 2 hrs. The precipitate was filtered off, dried then crystallized from the proper solvent to give compounds **4a**, **b**, respectively.

2,3,5,6-Tetrahydro-3-oxo-6-phenyl-7-(thiophen-2-yl)-5-thioxoimidazo[1,2-F]pyrimidin-8-carbonitrile (4a).

Yield (73%); mp 68-70°C; Cryst.(Acetic acid); IR (KBr) V_{max}/cm^{-1} : 3095 (CH aromatic),2925(CH aliph), 2212 (C=N), 1695 (C=O), 1630 (C=N), 1160 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 4.10 (s,2H,N-CH₂), 7.55-8.30 (m,8H,H aromatic and H thiophene); MS m/z(%): 350.42(M⁺, 0.48), 64(100). Anal. Calcd for C₁₇H₁₀N₄OS₂ (350.42): C, 58.27; H, 2.88; N, 15.99; Found: C, 58.42; H, 2.93; N, 16.06.

2,3,5,6-Tetrahydro-3-oxo-6-phenyl-7-(3,4-dimethoxyphenyl)-5-thioxoimidazo[1,2-f]pyrimidin-8-carbonitrile(4b).

Yield (76%); mp 100-102°C; Cryst.(Dioxane); IR (KBr) V_{max}/cm^{-1} : 3095 (CH aromatic),2920,2851 (CH aliph), 2215 (C=N), 1688 (C=O), 1639 (C=N), 1165 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.76, 3.84 (2s,6H,2OCH₃), 4.25 (s,2H,N-CH₂), 6.55-7.98 (m,8H,H aromatic); MS m/z(%): 404.44 (M⁺, 2.55), 406.40(M⁺², 3.10). Anal. Calcd for C₂₁H₁₆N₄O₃S (404.44): C, 62.36; H, 3.99; N, 13.85; Found: C, 62.49; H, 4.23; N, 13.99.

General procedure for synthesis of tetrazolopyrimidine derivatives 5a, b.

A mixture of compounds **2a or b** (0.01 mol) and sodium azide (0.05 mol) in (30 ml) glacial acetic acid was refluxed for 3 hrs. The solid obtained after cooling was crystallized from the proper solvent to give compounds **5a**, **b**.

5,6-Dihydro-6-phenyl-7-(thiophen-2-yl)-5-thioxotetrazolo[1,5-f]pyrimidin-8-carbonitrile (5a).

Yield (72%); mp 170-173°C; Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3035 (CH aromatic), 2214 (C=N), 1596 (C=C), 1255 (C=S); MS m/z(%): 336 (M⁺, 0.58), 337(M⁺¹, 0.44), 64(100). Anal. Calcd for C₁₅H₈N₆S₂ (336.39): C, 53.56; H, 2.40; N, 24.98; Found: C, 53.72; H, 2.63; N, 25.21.

5,6-Dihydro-6-phenyl-7-(3,4-dimethoxyphenyl)-5-thioxotetrazolo[1,5-f]pyrimidin-8-carbonitrile (5b).

Yield (78%); mp 171-172°C; Cryst.(Acetic Acid); IR (KBr) V_{max}/cm^{-1} : 3055 (CH aromatic), 2922,2855(CH aliph),2221 (C=N), 1625 (C=C), 1595 (C=N), 1260(C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.65 (s,3H,OCH₃), 3.83 (s,3H,OCH₃), 7.10-7.98 (m,8H,H aromatic); MS m/z (%): 391 (M⁺+1, 11.50), 64(100). Anal. Calcd for C₁₉H₁₄N₆O₂S (390.42): C, 58.45; H, 3.61; N, 21.53; Found: C, 58.31; H, 3.36; N, 21.29.

General procedure for synthesis of 4-substituted amino pyrimidine derivatives (6a-d).

A mixture, of compounds **2a**, **b** (0.01 mol) and the primary aromatic amines namely 4-bromoaniline and 2-furfurylamine (0.02 mol) in methanol (30 ml) was refluxed for 8-12 hrs. The solid obtained after cooling was crystallized from the proper solvent to give the titled compounds.

4-((4-bromophenyl)amino)-1-phenyl-6-(thiophen-2-yl)-2-thioxo-1,2-dihydropyrimidin-5-carbonitrile(6a).

Yield (69%); mp 180-183°C; Cryst.(Ethanol); IR (KBr) V_{max}/cm^{-1} : 3336 (NH), 3043 (CH aromatic), 2213 (C=N), 1639 (C=N), 1590 (C=N), 1154(C=S).¹H-NMR (DMSO-d₆, δ ppm): 6.90-8.15 (m,12H,H aromatic and H thiophene),11.79(s,1H,NH exchangeable with D₂O); MS m/z(%): 464 (M⁺-1, 55.03), 149(100). Anal. Calcd for C₂₁H₁₃BrN₄S₂ (465.39): C, 54.20; H, 2.82; N, 12.04; Found: C, 54.83; H, 3.05; N, 12.65.

4-((4-bromophenyl)amino)-6-(3,4-dimethoxyphenyl)-1-phenyl-2-thioxo-1,2-dihydropyrimidin-5-carbonitrile (6b).

Yield (73%); mp 119-121°C; Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3420 (NH), 3060 (CH aromatic),2935,2839 (CH aliph), 2217 (C=N), 1625 (C=N), 1605(C=N), 1157 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.75 (s,6H,2OCH₃), 6.75-7.90 (m,12H,H aromatic),12.00(s,1H,NH exchangeable with D₂O), ; MS *m/z*(%): 519(M⁺¹, 34.31), 149(100). Anal. Calcd for C₂₅H₁₉BrN₄O₂S (518.04): C, 57.80; H, 3.69; N, 10.79; Found: C, 57.03; H, 3.14; N, 10.27.

4-((furan-2-ylmethyl)-1-phenyl-6-(thiophen-2-yl)-2-thioxo-1,2-dihydropyrimidin-5-carbonitrile (6c).

Yield (70%); mp 170-173°C; Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3371 (NH), 3065 (CH aromatic), 2211 (C=N), 1633 (C=N), 1595 (C=C), 1165(C=S).¹H-NMR (DMSO-d₆, δ ppm): 4.92 (s,2H,<u>CH₂-NH)</u>, 6.55-7.80 (m,11H,H aromatic, H furan and H thiophene), 11.34 (s,1H,NH exchangeable with D₂O); MS *m/z*(%):392 (M⁺+2,19.08), 390 (M⁺, 31.03), 64(100). Anal. Calcd for C₂₀H₁₄N₄OS₂ (390.48): C, 61.52; H, 3.61; N, 14.35; Found: C, 61.93; H, 3.87; N, 14.79.

6-(3,4-dimethoxyphenyl)-4-((furan-2-ylmethyl)amino)-1-phenyl-2-thioxo-1,2-dihydropyrimidin-5-carbonitrile (6d).

Yield (75%); mp 100-103°C; Cryst.(Iso-propanol); IR (KBr) V_{max}/cm^{-1} : 3327 (NH), 3062 (CH aromatic), 2927,2841 (CH aliph),2209 (C=N), 1635(C=N), 1593 (C=N), 1156 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.70, 3.81 (2s,6H,2OCH₃), 4.45 (s,2H,CH₂-NH), 6.70-7.90 (m,11H,H aromatic and H furan), 11.00(s,1H,NH exchangeable with D₂O); MS m/z(%): 444 (M⁺, 33.15), 81(100). Anal. Calcd for C₂₄H₂₀N₄O₃S (444.51): C, 64.85; H, 4.54; N, 12.60; Found: C, 64.52; H, 4.26; N, 12.01.

General procedure for synthesis of hydrazino pyrimidine derivatives 7a, b.

A mixture of compounds **2a**, **b** (0.01 mol) and hydrazine hydrate (0.015 mol) in methanol (10 ml) was stirred for 8 hrs. The precipitate was filtered off, dried then crystallized from the proper solvent to give the titled compounds.

4-Hydrazinyl-l,2-dihydro-1-phenyl-6-(thiophen-2-yl)-2-thioxopyrimidin-5-carbonitrile (7a).

Yield (68%); mp 110-113°C; Cryst.(Benzene/pet.ether); IR (KBr) V_{max}/cm^{-1} : 3352,3310,3205 (NH), 3062 (CH aromatic), 2206 (C=N), 1601 (C=C), 1170 (C=S).¹H NMR (DMSO-d₆, δ ppm): 5.10 (S,2H,NH₂exchangeable with D₂O), 7.10-7.95 (m,8H, H aromatic, H thiophene), 11.70 (S,H,NH exchangeable with D₂O); MS

m/z(%):327(M⁺+2, 3.21), 325 (M⁺, 5.03), 64(100). Anal. Calcd for C₁₅H₁₁N₅S₂ (325.41): C, 55.36; H, 3.41; N, 21.52; Found: C, 55.02; H, 3.17; N, 21.36.

4-Hydrazinyl-I,2-dihydro-1-phenyl-6-(3,4-dimethoxyphenyl)-2-thioxopyrimidin-5-carbonitrile (7b)

Yield (75%); mp 160-163°C; Cryst.(Methanol); IR (KBr) V_{max}/cm^{-1} : 3430, 3340 (NH₂), 3185(NH), 3074(CH aromatic), 2921,2866 (CH aliph),2221 (C=N), 1633 (C=N), 1265 (C=S).¹H-NMR (DMSO-d₆, δ ppm): 3.80,3.91 (2s,6H,2OCH₃),5.22 (s,2H,NH₂, exchangeable with D₂O), 6.85-7.92 (m,8H,H aromatic), 13.20(s,H,NH exchangeable with D₂O); MS m/z(%): 380 (M⁺+1, 4.01), 164(100). Anal. Calcd for C₁₉H₁₇N₅O₂S (379.44): C, 60.14; H, 4.52; N, 18.46; Found: C, 60.39; H, 4.85; N, 18.63.

In-vitro cytotoxic screening

Cell growth inhibition assay

Newly synthesized compounds were subjected to invitro antitumor screening against human cancer cell lines using cell based approach[20-23]. Tested compounds were used to evaluate their antitumor potency on three human tumor cell lines namely: hepato cellular carcinoma HepG2, prostatic carcinoma PC3, and breast carcinoma MCF7. Cell viability was assessed by the mitochondrial dependent reduction of yellow MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] to purple Formosan[24,25]. Aprobit analysis was carried for LC50determination using SPSS 11 program the antitumor drug doxorubicin was used as a positive control.

The in vitro antitumor screening was performed adopting previously reported procedures[2 3- 25]. Cells were suspended in RPMI 1640 medium for HepG2 and DMHM for MCI7 and PC3,1% antibioticantimycotic mixture (10.000 μ /ml potassium penicillin, 10,000 mg/ml streptomycin sulfate and 25 mg/ml amphotericin B) and 1% L-glutamine at 37°C, under 5% CO₂ and 95% humidity. Cells were seeded at concentration of 10×10³ cells/well in fresh complete growth medium in 96-well microtiter plates for 24 h. Media was aspirated, fresh medium (without serum) was added and cells were incubated with different concentrations of sample to give a final concentration of (100, 50, 25 and 12.5 ppm.) 0.5% DMSO was used as negative control and doxorubicin was used as positive control. MTT assay was used for assessment of cytotoxicity[23 – 25]. After 72 hof incubation, medium was aspirated, 40 μ l MTT salt (2.5 mg/ml) were added to each well and incubated for further 4 h. To stop there action and dissolve the formed crystals, 200 μ l of 10% sodiumdodecyl sulfate (SDS) in deionized water were added to each well and incubated over night at 37°C. The absorbance was then measured at 595 nm and a reference wave length of 620 nm. The % cytotoxicitywas calculated according to the formula:

[1-(OD compound/OD negative control)] x100.

A probit analysis was carried for LC_{50} determination using SPSS11 program.

RESULTS AND DISCUSSION

Chemistry

The prepation of our target compounds were started by the reaction phenylthiourea and ethylcyanoacetate²⁶ with the appropriate aromatic aldehydes, namely, 2-thiophenaldehyde and verateraldehyde in absolute ethanol in presence of anhydrous potassium carbonate²⁷ to get thioxopyrimidine carbonitriles 1a, b respectively. Structures of compounds 1a, b were confirmed by spectral and analytical data, where appearance of signals at δ = 10.40 ppm and 11.20 ppm due to NH groups of **1a**, **b** respectively. Chlorination of compounds 1a, b by phosphorusoxychloride using and phosphoruspentachloride^{28,29}affordedchloroderivatives 2a, b, where the structures were elucidate by the disappearance of peaks at 1670,1685 cm⁻¹ in IR and signals at δ = 10.40 and 11.20 ppm in H-NMR due to carbonyl and NH groups. Which was then react with anthranilic acid²⁹ gave compounds **3a**, **b**, which showed appearance of a peaks at 1685,1692cm⁻¹ were assigned to C=O groups. In addition increased number of aromatic protons in H-NMR spectrum confirmed compounds 3a, b structure. Compounds 4a, b were achieved upon reactions of compounds **2a**, **b** with glycine²⁹ in n-butanol, structures of **4a**, **b** showed peaks at 2925, 2920

and 1695, 1688 cm⁻¹ were assigned to CH₂ and C=O groups, in addition appearance singlet signal at 4.1,4.25 ppm of CH2 confirmed structure. Subjecting2a,b to react with sodium azide²⁹in glacial acetic acid furnished thioxotetrazolopyrimidin derivatives **5a**, **b**, were their structures confirmed by mass spectra. Reaction of **2a**,**b** with 2-furfuralamine and 4-bromoaniline yielded compounds **6a-d**, their structure elucidate by H-NMR which showed appearance of singlet signals of NH groups at $\delta = 11.79, 12.00, 11.34, 11.00$ ppm for **6a-d** respectively. Stirring of **2a**,**b** with hydrazine hydrate afforded **7a**, **b** , the structure of **7a**, **b** confirmed by IR and H-NMR spectra which showed peaks at 3340-3352 cm-1 in IR and signals 4.92-5.22 ppm (NH) and 10.80-13.65 ppm (NH2) in H-NMR due to hydrazine moiety.

Cytotoxic activity evaluation

In the present work, the compounds 1a, 1b, 2b, 3a, 3b, 4a, 5b, 6a, 6b, 6c, 6d were selected to evaluate their in-vitro growth inhibitory activities against human cultured liver carcinoma cell line (HEPG2), human breast mammary gland (MCF7), prostate cancer (PC3) in comparison to Doxorubicin which is one of the most effective antitumor agents. According to (table 1), it is found that compound 1a shows moderate on HepG2, PC3 and MCF7 on the other hand compounds 6d show high potency on both PC3 and MCF7,while 6b showed high activity against HepG2 and compound 3a has activity against MCF7 in comparison with the used reference drug Doxorubicn

Table(1): The effect of some newly synthesized compounds against human cultured liver carcinoma cell line (HEPG2), human breast mammary gland (MCF7), prostate cancer(PC3).

Compound	LC _{so} (μMol)		
	HepG2	PC3	MCF7
1a	195.9	150	51.4
1b	-	-	-
2b	-	-	-
За	-	-	48.5
3b	-	-	-
4a	-	-	-
5b	-	-	-
6a	-	-	-
6b	46.3	-	-
6c	-	-	-
6d	-	61.1	28.35
Doxorubicin	69.55	54	47.8

LC₅₀: The concentration which gives 50% cell lethality

- : Inactive

CONCLUSION

This work deals with synthesis of new thiopyrimidine derivatives. 11 compounds were selected as representatives to evaluate their cytotoxic potency. Based on the above data it is worthwhile to mention that compounds **3a**, **6b**, **6d** show high potency against different human cancer cell lines in comparison with the reference drug Doxorubicin.

ACKNOWLEDGEMENT

The authors thank the microanalytical Unit at National Research Centre and Cairo University, Cairo, Egypt for microanalytical data, IR, &1H-NMR and Mass spectra.

REFERENCES

- [1] Undheim K, Benneche T, Katritzky AR, Rees C W, Scriven EVF. Eds. Pergamon Press: London, 1996;6:93-231.
- [2] Brown DJ, et al. Eds. John Wiley: New York, 1994, 52.
- [3] Johar M, Manning T, Kunimoto DY, Kumar R. Bioorg Med Chem 2005;13:6663.
- [4] Azas, N, Rathelot, P, Djekou, S, Delmas, F, Gellis, A, Di Giorgio, C, Vanelle, P, Timon-David, P.II Farmaco 2003;58:1263.

- [5] Agarwal A, Srivastava K, Puri, SK, Chauhan, PMS. Bioorg Med Chem 2005;13:4645.
- [6] Gompper R, et al. T. Chem Lett 1992;583.
- [7] Hanan GS, et al. Chem Int Ed 1997;36: 1842; Bassani DM, Lehn J.-M, Baum, G Fenske, D Angew.
 Chem Int Ed 1997;36:1845; Semenov A Spatz JP, et al. Chem Int. Ed 1999;38:2547.
- [8] Wong KT, et al. Org Lett 2002;4:513.
- [9] Harriman A, Ziessel, R. Coord Chem Rev 1998;171:331; Harriman A, Ziessel R. Chem Commun 1996;1707.
- [10] Heidelberelberge, C, Leibman KC and Bhrgava PM. Cancer Res 1957;17:39.
- [11] Straus MJ, Mantel N and Golden A. Cancer Res 1960;33: 201.
- [12] Straus MJ, N Mantel and A. Golden. Cancer Res 1960;35: 126.
- [13] Frieland M and Visser DW. Biochem Biophys 1961;51: 148.
- [14] Vansanten, G, Sorm F and Simzn EH. J Biol Chem 1965;237: 1271.
- [15] Zahn RK and Hagen U. Mol Pharmacy 1972; 1: 113.
- [16] Tomisek CG, Todd PW. and Borex E. Canadian Cancer Res. Conference, Pergaman1995; P: 34.
- [17] Fathalla OA, Zaghary WA, Radwan HH, Awad SM and Mohamed MS. Arch Pharm Res 2002;25(3): 258.
- [18] Lang P. New York, 1975.
- [19] Fathalla OA, Zeid IF, Haiba ME. and El Serwy, WS. Egypt Pharm J 2005;4(2): 593.
- [20] Girever MR, Schepartz, SA, Chabner BA. Semin Oncol 1992;19:622-638.
- [21] Monks, A, Scudiero, D, Skehan, P, Shoemake, R, Paull, K, Vistica, D, Hose, C, Langley, J, Cronise, P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. J Natl Cancer Inst 1991;83:757-760.
- [22] Boyd MR, Paull KD. Drug Rev Res 1995;34:91-109.
- [23] El-Menshawi BS, Fayad W, et al. Indian J Exp Biol 2010;48:258-264.
- [24] Thabrew MI, Hughes RD, McFarlane IG. J Pharm Pharmacol 1997;49:1132-1135.
- [25] Mosmann T. J Immunol Methods 1983;65:55-63.