Research Journal of Pharmaceutical, Biological and Chemical Sciences

Evaluation of Nonsynonymous Single Nucleotide Polymorphisms in the
 DNMT1 Gene Associated With Gastric Cancer by an In- Silico Approach.

Abstract

Valasala Harika Lakshmi, Narayana Swamy A, and Sreenivasulu Kamma*.

Biomedical Research Laboratory, Department of Biotechnology, KLEF University (Koneru Lakshmaiah Education Foundation) Vaddeswaram, Guntur, Andhra Pradesh, India.

\section*{ABSTRACT}

The human DNMT1 (NCBI GENE ID: 1786) gene encodes a DNA methyltransferase-1 which is also termed as maintenance methyltranferase. The DNMT1 (DNA Methyl Tranferase-1) gene plays a substantial role in aberrant DNA methylation in carcinogenesis. Over-expression (Increased activity) and polymorphisms within the DNMT1 gene is allied with a multiplied risk of gastric cancer. Most deleterious non synonymous single nucleotide polymorphisms in the coding region of the DNMT1 gene were investigated using SNP databases, and detected nonsynonymous variants were analyzed in silico from the standpoint of relevant protein function and stability by PolyPhen-2, SIFT, PROVEAN and MUpro, I-Mutant2.0 tools respectively. A sum of 93 nonsynonymous SNPs comprising of 92 missense variations and one frameshift variations were found in the DNMT1 gene. 10 of the 92 missense variants were predicted to be damaging or deleterious by three different software programs PolyPhen-2, SIFT, and PROVEAN, and 37 of them were predicted to be less stable using IMutant 2.0 and MUpro software. Total 5 variants namely c.4324C>T (p.Arg1442Trp), c.3913C>T (p.Arg1305Cys), c.3223C>T (p.Arg1075Cys), c.3097C>T (p.Arg1033Trp), c.1531T>C (p.Tyr511His) out of 92 missense variants were predicted to be both deleterious and reduced protein stability.Additionally, one frameshift variant (rs35600922) c.3475_3476insG (p.Asp1159Gly) was predicted to be both deleterious and less stable. Deleterious variants of DNMT1 gene with reduced protein stability were suggested that a subset of nonsynonymous SNPs in the DNMT1 gene might be associated with risk of cancer, including gastric cancer.

Keywords: PolyPhen-2, SIFT, PROVEAN, MUpro, I-Mutant2.0, CpG islands.

INTRODUCTION

The DNMT1 gene (MIM\#126375) is located on chromosome 19p13.2 with an aggregate size of 62 kb and is constituted of 40 exons. DNA (cytosine-5) methyltransferase1 has a part in the establishment and regulation of tissue specific patterns of methylated cytosine residues. DNMT1 has been shown to possess a 1040 fold preference for hemimethylated DNA (Pradhan et al.1999) and is that the most abundant methyltransferase in somatic cells. The DNMT1 is the foremost enzyme responsible for maintenance of the DNA methylation pattern and often referred as maintenance methyltransferase, because it is supposed to be the primary enzyme responsible for copying methylation patterns after DNA replication [1]. DNMT1 is situated at the replication fork and methylates newly biosynthesized DNA [2]. DNMT1 localizes to replication foci throughout S-phase via numerous independent domains and interacts with the proliferating cell nuclear antigen (PCNA). Over expression of DNMT1 has been identified in several human cancers including gastric cancer. Aberrant methylation patterns are allied with certain human tumors and developmental abnormalities. Aberrant methylation is associated with cancer as it alters the normal gene regulations and these alterations are of three types: hypermethylation, hypomethylation and loss of imprinting. This sort of aberrant methylation occurs mainly within the promoter CpG island regions which are unmethylated in the normal condition. DNA hypermethylation has been associated with transcriptional repression of tumour suppressive genes which results in tumour genesis [3]. Aberrant DNA methylation of CpG islands is a common epigenetic change found in gastric malignancy has been indicated to provoke alterations of DNA methylation in gastric mucosa [4].

Single nucleotide polymorphisms (SNPs) can result in small structural alterations in some important enzymes and thus changes in the susceptibility to cancer. As genomic variations among people, single nucleotide polymorphisms (SNPs) exist throughout the genome and can be divided into several groups. Among the different kinds of SNPs, a nonsynonymous SNP in the coding region of a gene is important because it alters the amino acid composition; consequently, such alterations can have an impact on protein structure, function, and subcellular localization. Although pinpointing the effects of the many nonsynonymous SNPs using biochemical analyses is challenging, computational analysis tools predicting their effect on protein activity and stability have been recently developed, such as Polymorphism phenotyping v2 (PolyPhen-2) [5], Sorting Intolerant From Tolerant (SIFT) [6], Protein Variation Effect Analyzer (PROVEAN) [7], I-Mutant 2.0 [8], and MUpro [9] software. Since the DNMT1 plays an important role in DNA methylation patterns and genome maintenance, a dysfunctional ability of DNMT1 as a result of nonsynonymous SNPs might be associated with susceptibility to diseases, including gastric cancer. Thus, in the current study, we searched for nonsynonymous SNPs in the DNMT1 gene using genome databases and explored the effects of nonsynonymous SNPs on DNMT1 protein function and stability using a computational approach.

MATERIALS AND METHODS

Collection of nonsynonymous SNPs

Data on nonsynonymous variations of the DNMT1 gene were collected from the database of SNPs (dbSNP) located on the homepage of the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov/SNP/) and from Ensembl genome browser (http:// http://www.ensembl.org/index.html). The reference Transcript ID and the reference Protein ID of DNMT1 are NM_001379.2 and NP_001370.1, respectively.

POLYPHEN-2 prediction

PolyPhen [10] is a computational tool for identification of potentially functional nsSNPs. Predictions are based on a combination of phylogenetic, structural, and sequence annotation information characterizing a substitution and its position in the protein. For a given amino acid variation, PolyPhen performs various steps: (a) extraction of sequence based features of the substitution site from the UniProt database, (b) calculating the profile scores for two amino acid variants, and (c) calculating the structural parameters and contacts of a substituted residue. PolyPhen-2 server discriminates nsSNPs into three main categories: scores were classified as "benign", "possibly damaging" or "probably damaging" [12].

SIFT prediction

The Sorting Intolerant from Tolerant (SIFT) algorithm predicts the consequence of coding variants on protein function based on the degree of conservation of aminoacid residues in sequence alignments derived from closely related sequences [6]. It was first introduced in 2001, with a corresponding website that provides users with predictions on their variants. Since its release, SIFT has become one of the standard tools for characterizing missense variation. SIFT is based on the premise that protein evolution is correlated with protein function. Variants that occur at conserved alignment positions are expected to be tolerated less than those that occur at diverse positions. The algorithm uses a modified version of PSIBLAST [11] and Dirichlet mixture regularization [13] to construct a multiple sequence alignment of proteins that can be globally aligned to the query sequence and belong to the same clade. The underlying principle of this program is that it generates alignments with a large number of homologous sequences and assigns scores to each residue, ranging from zero to one. SIFT scores [12] categorised as potentially intolerant (0.051-0.10), intolerant (0.00$0.05)$, tolerant ($0.201-1.00$) or borderline ($0.101-0.20$). The higher the tolerance index of a particular amino acid substitution, the lesser is its likely impact.

PROVEAN prediction

PROVEAN (Protein Variation Effect Analyzer), which predicts the functional impact for all classes of protein sequence variations not only single amino acid substitutions but also insertions, deletions, and multiple substitutions on the alignment based score [7]. The score measures the change in sequence similarity of a query sequence to a protein sequence homolog between without and with an amino acid variation of the query sequence. If the PROVEAN score ≤-2.5, the protein variant is predicted to have a "deleterious" effect, while if the PROVEAN score is >- 2.5 , the variant is predicted to have a "neutral" effect. Both types of software are available on the homepage of the J. Craig Venter Institute: the SIFT tool is at http://sift.jcvi.org, and the PROVEAN tool is at http://provean.jcvi.org.

I-Mutant 2.0 prediction

I-Mutant 2.0 (http://folding.biofold.org/i-mutant/i-mutant2.0.html) is a support vector machinebased tool for the prediction of protein stability changes upon nonsynonymous variations [8]. The tool evaluates the stability change upon nonsynonymous SNP starting from the protein structure or from the protein sequence. The DDG value (difference in free energy of mutation) is calculated from the unfolding Gibbs free energy value of the variant protein minus the unfolding Gibbs free energy value of the wild type ($\mathrm{Kcal} / \mathrm{mol}$), and scores <0 are predicted by the algorithm to indicate decreased stability, whereas scores >0 are considered to indicate increased stability.

MUpro prediction

MUpro (http://www.ics.uci.edu/~baldig/mutation.html) is also a support vector machine-based tool for the prediction of protein stability changes upon nonsynonymous SNPs [9]. The value of the energy change is predicted, and a confidence score between -1 and 1 for measuring the confidence of the prediction is calculated. A score <0 means the variant decreases the protein stability; conversely, a score >0 means the variant increases the protein stability.

RESULTS

By examining SNPs in the DNMT1 gene using the dbSNP, HGVD, ENSEMBL databases, a total of 93 nonsynonymous SNPs were found. These SNPs consisted of 92 missense variations, and one frameshift variation. To determine which missense variants are damaging or deleterious, PolyPhen-2, SIFT, and PROVEAN software were applied for the 92 missense variants of the DNMT1 gene (Table 1). In the PolyPhen-2 analysis, $26(28.2 \%)$ of the 92 variants were predicted to be probably damaging, and the others were predicted to be benign or possibly damaging. When the SIFT software was used, 21 variants (22.8%) were predicted to be damaging, and the others were predicted to be tolerated. In the PROVEAN analysis, 28 variants (30.4\%) were predicted to be deleterious, but the others were neutral. Among the above 10 (10.8%) common DNMT1 variants, namely, c.4324C>T (p.Arg1442Trp), c.3913C>T (p.Arg1305Cys), c.3519A>C (p.Gln1173His), c.3223C>T (p.Arg1075Cys), c.3097C>T (p.Arg1033Trp), c.3036C>G (p.lle1012Met), c.2464G>A (p.Gly822Arg), c.1816G>T
(p.Val606Phe), c.1532A>G (p.Tyr511Cys), c.1531T>C (p.Tyr511His), were found. Therefore, these variants are considered to be most likely damaging or deleterious.

Table 1: PolyPhen, SIFT and PROVEAN results for the 92 missense variants of DNMT1 gene

Nucleotide	Position	dbSNP ID	Protein	POLYPHEN-2 prediction score	SIFT prediction score	PROVEAN prediction score
c.4894G>C	g. 10133672	rs147118268	p.Asp1632His	(Probably Damaging) 0.995	Deleterious (0.01)	Neutral (-1.178)
c.4884A>T	g. 10133682	rs370070174	p.Glu1628Asp	(Benign) 0.003	Tolerated (0.58)	Neutral (-0.783)
c.4876G>A	g. 10133690	rs201774098	p.Glu1626Lys	(Benign) 0.030	Tolerated (0.41)	Neutral (-0.204)
c.4444C>	g. 10137130	rs147984942	p.Arg1482Cys	(Benign) 0.011	Tolerated (0.29)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.589) \\ \hline \end{gathered}$
c.4428T>G	g. 10137146	rs142647321	p.His1476Gln	(Benign) 0.037	Tolerated (0.07)	$\begin{gathered} \hline \text { Deleterious(- } \\ 2.707) \\ \hline \end{gathered}$
c.4324C>T	g. 10137250	rs139918621	p.Arg1442Trp	(Probably Damaging) 0.999	Deleterious (0.01)	$\begin{gathered} \hline \text { Deleterious(- } \\ 4.543) \\ \hline \end{gathered}$
c.4255G>A	g. 10137870	rs374047326	p.Ala1419Thr	(Benign) 0.000	Tolerated (0.13)	Neutral(0.592)
c.4221G>C	g. 10137904	rs367897930	p.Glu1407Asp	(Benign) 0.073	Tolerated (0.33)	Neutral(-1.465)
c.4193C>T	g. 10137932	rs375225009	p.Ser1398Leu	Possibly Damaging (0.952)	Deleterious (0.03)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.822) \\ \hline \end{gathered}$
c. $4108 \mathrm{~A}>\mathrm{C}$	g. 10138446	rs201167482	p.lle1370Leu	(Benign) 0.001	Tolerated (0.69)	Neutral(-0.633)
c.4061C>T	g. 10138493	rs141791913	p.Ala1354Val	(Probably Damaging) 0.995	Tolerated (0.13)	$\begin{gathered} \text { Deleterious(- } \\ 2.753) \\ \hline \end{gathered}$
c.3913C>T	g. 10139711	rs200312526	p.Arg1305Cys	(Probably Damaging) 1.000	Deleterious(0.02)	$\begin{aligned} & \text { Deleterious(- } \\ & 5.494) \\ & \hline \end{aligned}$
c.3659C>T	g. 10140193	rs142648642	p.Thr1220Ile	(Benign) 0.165	Tolerated(0.19)	$\begin{gathered} \hline \text { Deleterious(- } \\ 2.926) \\ \hline \end{gathered}$
c. $3656 \mathrm{C}>\mathrm{A}$	g. 10140196	rs201497993	p.Thr1219Asn	(Benign) 0.030	Tolerated(0.49)	Neutral(-1.206)
c.3519A>C	g. 10140785	rs151305495	p.GIn1173His	(Probably Damaging) 1.000	Deleterious(0.02)	$\begin{gathered} \text { Deleterious(- } \\ 4.329) \\ \hline \end{gathered}$
c. $3428 \mathrm{C}>\mathrm{T}$	g. 10140876	rs375976847	p.Pro1143Leu	Possibly Damaging (0.826)	Tolerated(0.23)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.404) \\ \hline \end{gathered}$
c.3413C>G	g. 10140891	rs201308454	p.Ser1138Cys	(Benign) 0.020	Tolerated(0.06)	Neutral(-2.24)
c.3358C>T	g. 10141141	rs200950656	p.Arg1120Cys	(Benign) 0.189	Tolerated(0.12)	Deleterious(-2.64)
c.3353A>G	g. 10141146	rs150331990	p.His1118Arg	(Benign) 0.340	Tolerated(0.21)	Deleterious(-3.19)
c.3352C>T	g. 10141147	rs374676749	p.His1118Tyr	(Benign) 0.069	Tolerated(0.16)	Neutral(-2.363)
c.3293G>T	g. 10142044	rs377078524	p.Arg1098Leu	Possibly Damaging (0.989)	Tolerated(0.24)	$\begin{gathered} \hline \text { Deleterious(- } \\ 6.008) \\ \hline \end{gathered}$
c.3278T>C	g. 10142059	rs370075258	p.Met1093Thr	(Benign) 0.000	Tolerated(0.48)	Neutral(0.121)
c.3223C>T	g. 10142114	rs140852137	p.Arg1075Cys	(Probably Damaging) 0.999	Deleterious(0.00)	$\begin{gathered} \text { Deleterious(- } \\ 5.374) \\ \hline \end{gathered}$
c.3196G>A	g. 10142141	rs187394074	p.Val1066Met	(Benign) 0.060	Tolerated(0.10)	Neutral(-1.065)
c.3157G>A	g. 10142180	rs370786558	p.Ala1053Thr	(Benign) 0.047	Tolerated(0.18)	Neutral(-0.907)
c.3098G>A	g. 10143784	rs199827346	p.Arg1033Gln	(Benign) 0.213	Tolerated(0.42)	Neutral(-1.792)
c.3097C>T	g. 10143785	rs144533539	p.Arg1033Trp	(Probably Damaging) 0.998	Deleterious(0.00)	$\begin{gathered} \hline \text { Deleterious(- } \\ 5.318) \\ \hline \end{gathered}$
c.3077A>T	g. 10143805	rs373940840	p.Asn1026Ile	Possibly Damaging (0.933)	Deleterious(0.02)	Neutral(-2.02)
c.3036C>G	g. 10143846	rs376854079	p.lle1012Met	(Probably Damaging) 1.000	Deleterious(0.02)	$\begin{gathered} \hline \text { Deleterious(- } \\ 2.629) \\ \hline \end{gathered}$
c. $2914 \mathrm{G}>\mathrm{A}$	g. 10143968	rs148038464	p.Val972Met	(Benign) 0.268	Tolerated(0.40)	Neutral(-1.084)
c.2728G>T	g. 10146517	rs150863675	p.Val910Leu	(Benign) 0.000	Tolerated(0.76)	Neutral(-0.698)
c.2693C>T	g. 10148911	rs201213597	p.Thr898Ile	(Benign) 0.000	Tolerated(0.19)	Neutral(-0.481)
c. $2656 \mathrm{G}>\mathrm{C}$	g. 10148948	rs367681882	p.Asp886His	(Benign) 0.268	Tolerated(0.58)	Deleterious(-

						4.168)
c.2626G>A	g. 10148978	rs62621087	p.Gly876Arg	(Probably Damaging) 1.000	Tolerated(0.48)	$\begin{gathered} \text { Deleterious(- } \\ 5.139) \\ \hline \end{gathered}$
c. $2471 \mathrm{C}>$ T	g. 10149568	rs140993011	p.Thr824Met	Possibly Damaging (0.973)	Tolerated(0.19)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.241) \\ \hline \end{gathered}$
c. $2464 \mathrm{G}>\mathrm{A}$	g. 10149575	rs183555527	p.Gly822Arg	Possibly Damaging (0.984)	Deleterious(0.00)	$\begin{gathered} \hline \text { Deleterious(- } \\ 7.127) \\ \hline \end{gathered}$
c. 2443 G >A	g. 10149596	rs373366822	p.Ala815Thr	Possibly Damaging (0.987)	Tolerated(0.12)	Neutral(-0.601)
c. $2387 \mathrm{C}>$ T	g. 10149652	rs148987580	p.Thr796Met	Possibly Damaging (0.589)	Tolerated(0.12)	Neutral(-0.625)
c.2369T>C	g. 10149865	rs113497353	p.Leu790Pro	Possibly Damaging (0.513)	Tolerated(0.30)	$\begin{gathered} \hline \text { Deleterious(- } \\ 4.051) \\ \hline \end{gathered}$
c. $2315 \mathrm{C}>\mathrm{A}$	g. 10149919	rs142562681	p.Thr772Asn	(Benign) 0.082	Tolerated(0.48)	Neutral(-1.28)
c.2161G>A	g. 10151502	rs375620967	p.Val721Ile	(Benign) 0.016	Tolerated(0.20)	Neutral(-0.276)
c.2152G>A	g. 10151511	rs368319266	p.Asp718Asn	Possibly Damaging (0.917)	Deleterious(0.05)	Neutral(-2.101)
c.1987G>A	g. 10154325	rs146467216	p.Ala663Thr	(Benign) 0.005	Tolerated(0.55)	Neutral(-1.004)
c.1816G>T	g. 10154602	rs397509391	p.Val606Phe	(Probably Damaging) 1.000	Deleterious(0.01)	$\begin{gathered} \text { Deleterious(- } \\ 4.075) \end{gathered}$
c.1814G>C	g. 10154604	rs397509393	p.Gly605Ala	(Probably Damaging) 1.000	Tolerated(0.22)	Deleterious(-5.41)
c.1709C>T	g. 10154709	rs397509392	p.Ala570Val	(Probably Damaging) 1.000	Tolerated(0.07)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.606) \\ \hline \end{gathered}$
c.1678C>T	g. 10154740	rs375474222	p.Arg560Cys	(Benign) 0.375	Tolerated(0.08)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.506) \\ \hline \end{gathered}$
c.1648A>G	g. 10154770	rs368761660	p.Thr550Ala	(Benign) 0.081	Tolerated(0.62)	Neutral(-1.788)
c.1532A>G	g. 10155017	rs199473690	p.Tyr511Cys	(Probably Damaging) 1.000	Deleterious(0.00)	$\begin{gathered} \hline \text { Deleterious(- } \\ 8.114) \\ \hline \end{gathered}$
c.1531T>C	g. 10155018	rs199473692	p.Tyr511His	(Probably Damaging) 1.000	Deleterious(0.00)	$\begin{gathered} \hline \text { Deleterious(- } \\ 4.508) \\ \hline \end{gathered}$
c.1436A>C	g. 10155909	rs374027926	p.Glu479Ala	(Benign) 0.208	Tolerated(0.21)	$\begin{gathered} \hline \text { Deleterious(- } \\ 3.806) \\ \hline \end{gathered}$
c.1294C>T	g. 10156496	rs181300723	:p.His432Tyr	(Benign) 0.001	Tolerated(0.13)	Neutral(-2.117)
c.1223A>G	g. 10159715	rs367727676	p.Asn408Ser	(Benign) 0.004	Tolerated(0.22)	Neutral(-1.555)
c.1195A>G	g. 10159743	rs142673915	p.Asn399Asp	(Benign) 0	Tolerated(1.00)	Neutral(1.965)
c.1145A>T	g. 10159867	rs141562679	p.Lys382Ile	(Benign) 0.243	Tolerated(0.52)	Neutral(-1.708)
c.1064G>C	g. 10160043	rs201945078	p.Arg355Pro	(Benign) 0.001	Tolerated(0.30)	Neutral(-0.357)
c.1043C>T	g. 10160384	rs370592431	p.Pro348Leu	(Benign) 0.011	Tolerated(0.34)	Neutral(-0.805)
c.1003G>A	g. 10162672	rs200531080	p.Glu335Lys	Possibly Damaging (0.493)	Tolerated(0.79)	Neutral(-1.295)
c.981T>G	g. 10162694	rs61758431	p.lle327Met	(Benign) 0.001	Tolerated(0.11)	Neutral(-0.558)
c.979A>C	g. 10162696	rs2228612	p.lle327Leu	(Benign) 0.001	Tolerated(0.30)	Neutral(-0.488)
c.977A>C	g. 10162698	rs143287044	p.Gln326Pro	Possibly Damaging (0.467)	Tolerated(0.15)	Neutral(-0.583)
c.946G>A	g. 10162729	rs200601847	p.Glu316Lys	(Benign) 0.008	Tolerated(0.92)	Neutral(-0.108)
c.925C>G	g. 10163327	rs61758430	p.Leu309Val	Possibly Damaging (0.933)	Tolerated(1.00)	Neutral(-0.083)
c.919A>G	g. 10163333	rs148831705	p.Lys307Glu	(Benign) 0.144	Tolerated(0.82)	Neutral(-0.015)
c. $890 \mathrm{~A}>\mathrm{G}$	g. 10166599	rs201025441	p.Lys297Arg	(Benign) 0.001	Tolerated(0.58)	Neutral(-0.448)
c. $868 \mathrm{G}>\mathrm{A}$	g. 10166621	rs200024502	p.Glu290Lys	(Benign) 0.165	Tolerated(0.78)	Neutral(-0.257)
c.856G>A	g. 10166633	rs368960099	p.Val286Met	Possibly Damaging (0.663)	Tolerated(0.06)	Neutral(-0.221)
c. $827 \mathrm{~A}>\mathrm{T}$	g. 10166662	rs372129479	p.Glu276Val	Possibly Damaging (0.979)	Tolerated(0.26)	Neutral(-0.942)
c.740C>A	g. 10173118	rs370064676	p.Thr247Asn	(Benign) 0	Tolerated(0.33)	Neutral(-0.391)
c.736C>T	g. 10173122	rs201749864	p.Arg246Cys	Possibly Damaging (0.618)	Deleterious(0.03)	Neutral(-0.054)
c.734C>T	g. 10173124	rs143598088	p.Thr245Met	(Probably Damaging) 1.000	Deleterious(0.00)	Neutral(-0.751)
c.731G>A	g. 10173127	rs150999369	p.Gly244Glu	(Benign) 0.373	Deleterious(0.04)	Neutral(0.728)

c.694C>A	g. 10173164	rs374856119	p.Pro232Thr	(Benign) 0.066	Tolerated(0.55)	Neutral(0.148)
c.575C>T	g. 10175613	rs62621089	p.Ala192Val	(Benign) 0.328	Tolerated(0.13)	Neutral(-0.525)
c.527A>G	g. 10177334	rs374440818	p.Lys176Arg	(Benign) 0	Tolerated(0.73)	Neutral(-0.088)
c.520A>C	g. 10177341	rs201319352	p.Thr174Pro	Possibly Damaging (0.955)	Tolerated(0.10)	Neutral(-1.156)
c.440C>G	g. 10180355	rs1140470	p.Ala147Gly	(Benign) 0.066	Deleterious(0.02)	Neutral(-0.32)
c.410C>T	g. 10180385	rs377146699	p.Thr137Met	Possibly Damaging (0.981)	Tolerated(0.10)	Neutral(-0.701)
c.406C>T	g. 10180389	rs138841970	p.Arg136Cys	(Benign) 0.003	Tolerated(0.07)	Neutral(-1.053)
c.386C>G	g. 10180409	rs370207020	p.Pro129Arg	Possibly Damaging (0.836)	Tolerated(0.16)	Neutral(-0.894)
c. $382 \mathrm{C}>\mathrm{A}$	g. 10180413	rs146601335	p.Pro128Thr	(Benign) 0.29	Tolerated(0.80)	Neutral(-0.312)
c.358G>C	g. 10180437	rs75616428	p.Val120Leu	(Benign) 0.264	Tolerated(0.26)	Neutral(-0.363)
c.357A>C	g. 10180438	rs373923585	p.Arg119Ser	(Benign) 0.023	Tolerated(0.70)	Neutral(-0.166)
c.355A>G	g. 10180440	rs146516082	p.Arg119Gly	Possibly Damaging (0.165)	Tolerated(0.67)	Neutral(-0.743)
c.353G>A	g. 10180442	rs149362098	p.Arg118His	Possibly Damaging (0.981)	Tolerated(0.19)	Neutral(-0.064)
c.328G>A	g. 10180467	rs376894659	p.Gly110Arg	(Probably Damaging) 1.000	Deleterious(0.01)	Neutral(-1.484)
c.301C>T	g. 10180494	rs369196079	p.Arg101Trp	(Probably Damaging) 0.997	Deleterious(0.02)	Neutral(-0.655)
c.290A>G	g. 10180505	rs16999593	p.His97Arg	(Benign) 0.437	Tolerated(0.82)	Neutral(-1.088)
c.206G>A	g. 10180797	rs61750053	p.Arg69His	(Benign) 0	Tolerated(0.38)	Neutral(0.044)
c.163A>G	g. 10180840	rs375585911	p.Thr55Ala	(Probably Damaging) 0.996	Tolerated(0.82)	Neutral(-0.431)
c.97A>G	g. 10182061	rs374817622	p.Arg33Gly	(Probably Damaging) 0.996	Deleterious(0.02)	Neutral(-0.365)

Table 2: I-Mutant 2.0 (DDG) and MUpro prediction results for the 92 missense variants of DNMT1 gene

Protein	I-MUTANT 2.0	MUpro prediction score
	prediction DDG	
p.Asp1632His	Increase (0.22)	Decrease(-0.10903844)
p.Glu1628Asp	Decrease (-0.59)	Decrease(-0.52108761)
p.Glu1626Lys	Decrease (-1.1)	Increase (0.42257611)
p.Arg1482Cys	Decrease (-1.41)	Decrease(-0.65875544)
p.His1476Gln	Decrease (-1.07)	Increase (0.15517414)
p.Arg1442Trp	Decrease (-1.04)	Decrease(-0.65662057)
p.Ala1419Thr	Decrease (-0.73)	Decrease(-0.3106366)
p.Glu1407Asp	Increase (0.71)	Decrease(-0.93424268)
p.Ser1398Leu	Increase (0.07)	Increase (1.00)
p.lle1370Leu	Decrease (-0.71)	Decrease(-0.20012688)

p.Ala1354Val	Increase (0.37)	Increase(0.4574522)
p.Arg1305Cys	Decrease (-1.19)	Decrease (-1)
p.Thr1220Ile	Decrease (-0.42)	Decrease(-0.32585604)
p.Thr1219Asn	Decrease (-0.44)	Increase (0.21924097)
p.Gln1173His	Increase (0.05)	Decrease (-0.02099037)
p.Pro1143Leu	Increase (0.28)	Increase (0.49908364)
p.Ser1138Cys	Decrease (-1.07)	Decrease(-0.12061732)
p.Arg1120Cys	Decrease (-0.75)	Decrease(-0.55790231)
p.His1118Arg	Decrease (-0.2)	Increase (0.56244423)
p.His1118Tyr	Increase (0.51)	Increase (0.51835535)
p.Arg1098Leu	Decrease (-0.32)	Increase (0.57209445)
p.Met1093Thr	Decrease (-2.1)	Decrease(-0.51850139)
p.Arg1075Cys	Decrease (-1.19)	Decrease(-0.10784229)
p.Val1066Met	Decrease (-1.81)	Decrease(-0.27486652)
p.Ala1053Thr	Decrease (-1.01)	Decrease(-0.32267644)
p.Arg1033Gln	Decrease (-2)	Decrease(-1)
p.Arg1033Trp	Decrease (-1.34)	Decrease(-0.91990014)
p.Asn1026lle	Increase (1.11)	Increase (0.079030455)
p.lle1012Met	Decrease(-0.53)	Increase (0.081750989)
p.Val972Met	Decrease(-2.33)	Decrease(-0.21734536)
p.Val910Leu	Decrease(-0.39)	Decrease(-0.3568134)
p.Thr8981le	Decrease(-0.92)	Decrease(-0.7727123)

p.Asp886His	Decrease(-0.2)	Decrease(-0.63334686)
p.Gly876Arg	Decrease(-1.07)	Decrease(-0.5232877)
p.Thr824Met	Increase (0.14)	Increase (0.60580589)
p.Gly822Arg	Decrease(-2.31)	Increase(0.43076103)
p.Ala815Thr	Decrease(-1.15)	Increase (-0.39906648
p.Thr796Met	Decrease(-0.58)	Increase (0.65700508(I)
p.Leu790Pro	Decrease(-1.07)	Decrease(-1)
p.Thr772Asn	Decrease(-0.56)	Decrease(0.12964373)
p.Val721Ile	Decrease(-0.51)	Decrease(-1)
p.Asp718Asn	Decrease(-0.81)	Decrease(-0.074145978)
p.Ala663Thr	Decrease(-1.03)	Decrease(-0.84092604)
p.Val606Phe	Decrease(-1.95)	Increase (0.1003691)
p.Gly605Ala	Decrease(-0.65)	Decrease(-0.35296908)
p.Ala570Val	Increase (0.34)	Increase (1.00)
p.Arg560Cys	Decrease(-1.35)	Decrease(-0.88868736)
p.Thr550Ala	Decrease(-1.53)	Decrease(-1)
p.Tyr511Cys	Increase (1.01)	Decrease(-1)
p.Tyr511His	Decrease(-1.21)	Decrease(-1)
p.Glu479Ala	Decrease(-1.22)	Decrease(-0.66101422)
p.His432Tyr	Increase (0.53)	Increase (0.38227554)
p.Asn408Ser	Decrease(-0.37)	Decrease(-0.89456556)
p.Asn399Asp	Decrease(-1.55)	Decrease(-0.44215936

p.Lys382Ile	Decrease(-0.54)	Decrease(-1)
p.Arg355Pro	Decrease(-1.68)	Decrease(-1)
p.Pro348Leu	Increase (0.56)	Increase (0.69297658)
p.Glu335Lys	Decrease(-1.46)	Decrease(-0.84073241)
p.lle327Met	Decrease(-1.17)	Decrease(-0.48730767)
p.lle327Leu	Decrease(-1.07)	Decrease(-0.57145761)
p.Gln326Pro	Decrease(-2.28)	Increase (0.061387435)
p.Glu316Lys	Decrease(-1.35)	Increase (0.061387435)
p.Leu309Val	Decrease(-1.07)	Increase (0.061387435)
p.Lys307Glu	Decrease(-0.06)	Increase (0.061387435)
p.Lys297Arg	Decrease(-0.71)	Increase (0.061387435)
p.Glu290Lys	Decrease(-0.98)	Increase (0.061387435)
p.Val286Met	Decrease(-0.46)	Increase (0.061387435)
p.Glu276Val	Decrease(-0.15)	Increase (0.061387435)
p.Thr247Asn	Decrease(-0.39)	Increase (0.061387435)
p.Arg246Cys	Decrease(-0.03)	Increase (0.061387435)
p.Thr245Met	Increase (0.29)	Increase (0.061387435)
p.Gly244Glu	Decrease(-0.59)	Increase (0.061387435)
p.Pro232Thr	Decrease(-1.55)	Increase (0.061387435)
p.Ala192Val	Decrease(-0.5)	Increase (0.061387435)
p.Lys176Arg	Increase (0.14)	Increase (0.061387435)
p.Thr174Pro	Decrease(-0.75)	Increase (0.061387435)

p.Ala147Gly	Decrease(-0.95)	Increase (0.061387435)
p.Thr137Met	Decrease(-0.95)	Increase (0.061387435)
p.Arg136Cys	Decrease(-0.5)	Increase (0.061387435)
p.Pro129Arg	Decrease(-0.3)	Increase (0.061387435)
p.Pro128Thr	Decrease(-1.27)	Increase (0.061387435)
p.Val120Leu	Increase (0.63)	Increase (0.061387435)
p.Arg119Ser	Decrease (-2.25)	Increase (0.061387435)
p.Arg119Gly	Decrease (-1.58)	Increase (0.061387435)
p.Arg118His	Decrease (-0.33)	Increase (0.061387435)
p.Gly110Arg	Decrease (-0.12)	Increase (0.061387435)
p.Arg101Trp	Decrease (-0.62)	Increase (0.061387435)
p.His97Arg	Decrease (-0.11)	Increase (0.061387435)
p.Arg69His	Decrease (-0.89)	Increase (0.061387435)
p.Thr55Ala	Decrease (-1.25)	Increase (0.061387435)
p.Arg33Gly	Decrease (-1.03)	Increase (0.061387435)

Table 3: Frameshift variation of DNMT1 gene

Nucleotide	Position	dbSNP ID	Protein	SIFT	PROVEAN	POLYPHEN	I-MUTANT	MUpro
c.3475_3476insG	g. 10140828	rs35600922	p.Asp1159Gly	Damaging (0)	Deleterious	Probably	Decrease	Decrease
					(-6.614)	$\begin{gathered} \text { Damaging } \\ (1.000) \\ \hline \end{gathered}$	(-1.29)	(-1)

Next, the changes in the protein stability of the missense variants were examined using I-Mutant 2.0 and MUpro software (Table 2). In the I-Mutant 2.0 (DDG) prediction, 77 (71.61%) of the 92 variants were predicted to be decreasing the protein stability and the others were predicted to be increasing the protein stability, in case of MUpro prediction, 42 (39.06%) of the 92 missense variants were predicted to be reducing the protein stability and others were predicted to be increasing the stability of protein. A total of 37 variants (40.2%) out of the 92 missense variants were common. Regarding the one frameshift variation in the DNMT1 gene, the variant c.3475_3476insG (p.Asp1159Gly) was also predicted to be both deleterious or damaging and less stable by using Polyphen-2, SIFT, PROVEAN, I-MUTANT and MUpro software (Table.3). Out of 93 DNMT1 variants a total of 6 variants namely c.4324C>T (p.Arg1442Trp), c.3913C>T (p.Arg1305Cys), c.3475_3476insG (p.Asp1159Gly), c.3223C>T (p.Arg1075Cys), c.3097C>T (p.Arg1033Trp), c.1531T>C (p.Tyr511His) were predicted to be damaging or deleterious by using Polyphen-2, SIFT, PROVEAN software and predicted to be
less stable using both I-Mutant and the MUpro software.

DISCUSSION

Our analysis revealed 93 non synonymous variants out of which 92 missense and one frame shift variants. 5 variants namely c.4324C>T (p.Arg1442Trp), c.3913C>T (p.Arg1305Cys), c.3223C>T (p.Arg1075Cys), $\mathrm{c} .3097 \mathrm{C}>\mathrm{T}$ (p.Arg1033Trp), c.1531T>C (p.Tyr511His) out of 92 missense variants showed a high deleterious scores by SIFT, PROVEAN, PolyPhen and decreasing the protein stability upon their aminoacid changes by I Mutant 2.0 and MUpro. Additionally one framehift variant c.3475_3476insG (p.Asp1159Gly) was also predicted to be both deleterious or damaging and less stable by using Polyphen-2, SIFT, PROVEAN, I-MUTANT and MUpro software. These variants are considered to be most likely damaging or deleterious and less stable. DNA methylation has turn into the subject of intense investigation in cancer cells. It has been reported that the incidence and degree of DNA hyper methylation was exaggerated in other groups of cancers such as gastric carcinoma, lung cancer, hepato cellular carcinoma, hepatitis and liver cirrhosis compared with the normal mucosa [14-16]. It was reported that DNMT1 mRNA over expression correlates significantly with CpG island methylator phenotype in gastric and colorectal cancers [17]. As compared with normal cells, the malignant cells show major disruptions in their DNA methylation patterns. Aberrant methylation patterns may also ultimately affect gene activity with the disruption of the transcription- translation process by escalating the possibility for a mutational event to take place and reducing overall chromosomal stability, leading to the manufacture of a dysfunctional protein product. To those conducting large-scale population based epidemiologic studies; the idea of prioritizing nsSNPs in the investigation of association of SNPs with disease risk is of great interest. The use of these servers to select potentially polymorphic nsSNPs for epidemiology studies can be an efficient way to investigate the role of genetic variation in disease risk and to curtail cost. Furthermore, predicted impact of these nsSNPs can be tested with the use of animal models or cell lines to determine if functionality of the protein has indeed been altered.

CONCLUSION

A total of 93 nonsynonymous SNPs consisting of 92 missense variations, and 1 frameshift variations were found in the DNMT1 gene by searching dbSNP and ENSEMBL databases in this study. Eleven of the 93 missense variants were predicted to be damaging or deleterious by the PolyPhen-2, SIFT, and PROVEAN software programs, and 38 of the variants were predicted to be less stable by both the I-Mutant 2.0 and MUpro software programs. Out of 93 DNMT1 variants a total of 6 variants that were both deleterious and decreased protein stability will be studied further based on Insilico and population studies. These results suggested that alleles that encode functionally reduced or less stable DNMT1 proteins may exist in humans. These DNMT1 alleles might be associated with an increased risk of diseases, including gastric cancer. We therefore concluded this nsSNP as the potential functional polymorphic.

ACKNOWLEDGMENTS

The authors thankful for management of KL University for providing the facilities to undertake this study.

REFERENCES

[1] Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Human Mol Gen 2007;16(R1):R28-R49.
[2] Ghoshal K, Bai S. Drugs Today (Barc) 2007;43(6):395-422.
[3] Sandoval J, Esteller M. Curr Opinion Gen Develop 2012;22(1):50-55.
[4] Jiang J, Jia Z, Cao D, Jin M-S, Kong F, Suo J, Cao X. PloS one 2012;7(9):e46058.
[5] Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. Nature methods 2010;7(4):248-249.
[6] Kumar P, Henikoff S, Ng PC. Nature Protocols 2009;4(7):1073-1081.
[7] Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. PloS one 2012;7(10):e46688.
[8] Gromiha MM, An J, Kono H, Oobatake M, Uedaira H, Prabakaran P et al. Nucleic Acids Res 2000; 28(1): 283-285.
[9] Cheng J, Randall AZ, Sweredoski MJ, Baldi P. Nucleic Acids Res 2005;33(suppl 2):W72-W76.
[10] Ramensky V, Bork P, Sunyaev S. Nucleic Acids Res 2002;30(17):3894-3900.
[11] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Nucleic Acids Res 1997; 25(17):3389-3402.
[12] Xi T, Jones IM, Mohrenweiser HW. Genomics 2004;83(6):970-979
[13] Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D. CABIOS 1996;12(4):327-345.
[14] Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S. Int J Cancer 2001;91(2):205-212.
[15] Kanai Y, Ushijima S, Ochiai A, Eguchi K, Hui A-m, Hirohashi S. Cancer Lett 1998;122(1):135-141.
[16] Kanai Y, Ushijima S, Tsuda H, Sakamoto M, Hirohashi S. Cancer Lett 2000;148(1):73-80.
[17] Saito Y, Kanai Y, Sakamoto M, et al. Hepatology 2001;33:561-8.

