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ABSTRACT 
 

A numerical investigation was made of steady laminar flow and convective heat transfer in a pipe 
constricted by a coaxially rotating disk. The analysis was done with aluminium oxide nanofluid of different 
concentrations as the working fluid and compared with the results of water obtained by Janusz Wojtkowiak. 
Calculations were made for the through-flow Reynolds numbers in the range of 10-150, and for the disk-to-
pipe radius ratios of 0.9-0.99. The pressure drop coefficient, length of wall and disk recirculation regions, local 
and average Nusselt numbers, temperature distributions are presented. The results show that the 
temperature and flow characteristics are substantially affected due to the rotation of the disk. This affect is 
more when aluminium oxide nanofluid is passed through the pipe compared to distilled water, the base fluid 
of al2o3 nanofluid. 
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INTRODUCTION 
 

In the present work, initially a plane pipe without any obstructions was taken. Simulations were 
carried out for laminar fully developed flow with varying mean axial velocity .since our case is a constant wall 
temperature fully developed laminar flow, Nusselt number is a constant. 

 
Next the same pipe, having a stationary disk inside was taken and test cases were run for different 

Reynolds number. Next test runs were made to compute the local pressure drop coefficient for stationary disk 
in a pipe. Test cases were also run by varying the disk radius inside the pipe. 
 

Further work is concentrated on using nanofluids with varying concentrations as working fluids inside 
the pipe. Properties of al2o3nanofluid with varying particle concentrations are collected. The thermal 
conductivity of metallic liquids is much greater than that of non metallic liquids. Therefore, the thermal 
conductivities of fluids that contain suspended solid metallic particles could be expected to be significantly 
higher than those of conventional heat transfer fluids [1-10]. 
 

EXPERIMENTAL 
 

 In the present work, a straight pipe of length l1+l2+ld=55 cm is considered. 

 Test cases were run for laminar fully developed flow with various Reynolds number (10<Re<150).  

 Test cases were run for laminar fully developed flow with various disk-pipe radius ratio (Nrd=0.9 -
0.99). 

 The same test cases were run by introducing nanofluids 

 in to the pipe instead of water. 

 The range of parameters pertinent to practical applications are identified and the local pressure 
fields, velocity profiles and nusselt number distributions are exhibited. 

 
RESULTS AND DISCUSSION 

 
In Figs.2 and 3 plots of the numerically constructed stream functions are exemplified. From these 

graphs it can be observed that as Re increases, the flow structure on the upstream side of the disk is 
unaffected, whereas the flow on the downstream side undergoes conspicuous changes. For low values of 
Reynolds number i.e., for Re=10, the flow patterns are qualitatively similar on both sides of the disk, i.e., no 
separation, and no recirculation zones are visible. Physically, for a very low Reynolds number, the inertial 
forces have not induced separation. As Re increases from 10 to 100, an annual wall jet is formed, and one large 
recirculation region on the downstream face of the disk can be observed. With further enhancement of 
Reynolds number from 100 to 150, a new recirculation region begins to form on the pipe wall due to adverse 
pressure gradient caused by the sudden expansion. On the downstream side of the disk, the increasing 
pressure slows down the wall flow and pushes the fluid backwards .The disk recirculation region is principally 
due to abrupt change in the flow geometry. As Re increases, an elongated separation bubble is formed on the 
pipe wall and a strong interaction between the disk and the wall recirculation regions is noticeable. The size of 
the wall bubble increases and the length of the disk recirculation zone is reduced. Simultaneously changes in 
the internal structure of the disk region are evident.  
 
Wall and disk recirculation regions 
 

The forgoing observations based on the numerically constructed visualizations are summarized to 
represent a quantitative portrayal of the two principal flow elements, i.e., the disk recirculation zone and the 
wall recirculation zone. In Figs. 4 – 7 the variation in x and y with Re are shown plotted. When the wall 
recirculation region is formed, the disk recirculation zone shrinks in size. Also, the wall recirculation region 
grows relatively fast as Re or Nrd increases. Figs. 4 and 5 illustrates that the effect of Nrd and rd on wall 
recirculation region length. The mechanism of the formation of the wall recirculation zone is the presence of a 
positive pressure gradient in the downstream side of the disk. The pressure gradient increases with Re and Nrd.  
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Local pressure drop coefficient 
 

In Fig. 8 the relationship between the local pressure drop coefficient and Re for different working 
fluids is presented. It is observed that there is no change in f with varying working fluids. In Fig .9 the 
dependence of f on Nrd is presented. It is observed that f increases with increasing Nrd.   
 
Heat transport characteristics 
 

Heat transport characteristics are mentioned in Figs.10-18.The axial profiles of local Nusselt number 
on the pipe wall and the variations of the fluid bulk temperature are shown plotted. At the inlet, a uniform 
temperature profile is specified, which gives a large value of Nu. As the fluid reaches the disk region, the fluid 
is accelerated. The fluid impinges on the cold pipe wall, which leads to a sudden and extremely localized 
increase in Nu. Downstream of this disk region, Nu generally drops off sharply to a very low value, which is 
caused by reduced fluid velocities leaving the pipe at the outlet. When the wall recirculation region begins to 
form, some decrease in Nu is visible. This is due to the fact that the wall recirculation zone causes the main 
through-flow to move away from the pipe wall. The minimum value of the Nusselt number occurs in the 
vicinity of the separation point of the wall recirculation region. For downstream close to the exit, Nu tends to 
settle down to the value for a fully developed pipe flow. 

 
Bulk temperature 
 

The profiles of the bulk temperature t are included in Figs 10 and 11. A monotonic decrease in t is 
seen in the upstream region of the disk. In the disk gap region, a rapid decrease in t is visible. In the 
downstream region, a mild decrease in t is evident. In general, the rate of decrease in t becomes more 
pronounced as Re decreases. Minor irregularities in the bulk temperature plots, which are noticeable on the 
disk upstream-side and on the disk downstream-side, are attributable to the existence of the upstream side, 
and the downstream side wall recirculation regions. A combination of the reverse flow in these regions with 
the main flow produces the bulk temperature peaks, are shown in the graphs.  
 
Average Nusselt number 
 

In Fig.18 the relationship between average Nusselt number and Re for various working fluids is 
shown. It is observed that, as the nanofluids particle concentration increases, the average Nusselt number 
increases with increasing Re.The percentage increase in the average Nusselt number when 0.5% aluminium 
oxide nanofluid is used in the case of stationary disk is 5.13%.The percentage increase in the average Nusselt 
number when 0.8% aluminium oxide nanofluid is used in the case of stationary disk is 9%. 
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a) 

 
b) 

 
c) 

 
 
 
 
 

Fig. 2. : Plots Of The Meridional Stream Function For The Case Nrd=0.95 And    Reω=0: 
a) Re=10; b) Re=100; c) Re=150  For   WATER 

 
 
 

a) 

 
b) 

 
c) 

 
Fig. 3. Plots Of The Meridional Stream Function For The Case Nrd=0.95 And Reω=0: 

 
a) Re=10; b) Re=100; c) Re=150 For 0.2 %Al2o3 
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Fig.4 Wall Recirculation Region Length Vs. Re For Different Working Fluids 
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Fig. 5  Wall Recirculation Region Length Vs. Re For Different Disk Radii 
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Fig. 6 Disk Recirculation Region Length Vs. Re For Different Working Fluids 
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Fig. 7  Disk Recirculation Region Length Vs Re For Different Disk Radii 
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Fig. 8   Local Pressure Drop Coefficient Vs Reynolds Number For Different Working Fluids 
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Fig. 9 Local Pressure Drop Coefficient Vs. Reynolds Number For Different Disk Radii 
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Fig. 10 Bulk Temperature Of The Fluid Vs Axial Distance For Different Flow Reynolds Numbers 
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Fig. 11      Bulk Temperature Vs Axial Distance For Different Working Fluids 
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Fig .12  Local Nusselt Number Vs Axial Distance For Different Reynolds Numbers 
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Fig. 13   Local Nusselt Number Vs Axial Distance For Different Disk Radii 
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Fig. 14   Local Nusselt Number Vs. Axial Distance For Different Working Fluids 
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Fig. 15 Local Heat Transfer Coefficient Vs Axial Distance For Different Through Flow Reynolds Numbers 
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Fig. 16   Local Heat Transfer Coefficient Vs Axial Distance For Different Disk Radii 
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Fig. 17.    Local Heat Transfer Coefficient Vs Axial Distance For Different Working 

Fluids 
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Fig. 18  Average Nusselt Number Vs Axial Flow Reynolds Number For Different Working Fluids. 
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Table. 1 Enhancement in average Nusselt number with increasing aluminium oxide nanofluid particle concentration for 
different Axial flow Reynolds numbers 

 

CONCLUSION 
 

Numerical results have been obtained for steady laminar fluid flow and heat transfer in a pipe with 
disk and without disk. It is observed that the presence of the disk has profound impact on the flow and heat 
transfer characteristics especially in the downstream side of the disk. The percentage increase in the average 
Nusselt number when 0.5% aluminium oxide nanofluids is used in the case of stationary disk is 5.13%.The 
percentage increase in the average Nusselt number when 0.8% aluminium oxide nanofluids is used in the case 
of stationary disk is 9%. 
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