Research Journal of Pharmaceutical, Biological and Chemical Sciences

Synthesis of 3-(4-(imidazo [4,5-b]pyridine-2-yl)phenylamino)-2 arylthiazolidin-4ones and 1-(4-(3H-imidazo[4,5-b]pyridine2-yl)pheylamino)-3-chloro-4-arylazetidin-2-ones.

Dayakar G*, and Sujatha I

Department of chemistry, Kakatiya university , Warangal, A.P-506009.

ABSTRACT

2, 3-Diaminopyrindine (1) reacts with 4-bromobenzaldehyde (2) and gives 2-(4-bromophenyl)-3H-imidazo[4,5-b]pridine (3). The bromo group is substituted by hydrazine hydrate to produce compound (4). Then it is condensedwith different aldehydes and the product obtained is reacted thioglycolic acid and chloroacetyl chloride to offer 3-(4-(3H-imidazo[4,5-b]pyridine-2-yl)phenylamino)-2-arylthiazolidin-4-onesm (6a-i) and 1-(4)(3H-imidazo[4,5-b]pyridine-2-yl) phenylamino)-3-chloro-4-arylazetidin-2-ones (7a-i) respectively.
Keywords: synthesis, pyridine, hydrazine, thioglycolic acid

INTRODUCTION

2, 3 diaminopyridine and imidazo [4,5-b]pyridines have been proved to be useful precursors for the synthesis of a variety of medicinal agents. The heterocycles derived from these intermediates have recently been evaluated as antagonists of various biological receptors, including angiotensis-II,[1] platelet activating factor (PAF)[2] metabotropic glutamate subtype V[3]. substituted Imidazo [4,5-b]pyridines have also been tested for their potential as anticancer,[4] inotropic,[5] and Selective antihistamine (H1) agents.[6] Imidazo [4,5-b]pyridines derivatives were also reported as Aurora kinases,[7] cyclic PDF inhibitors.[8] Hence, the synthesis of Imidazo [4,5-b]pyridines derivatives is currently of great interest. Various methods [9-16] reported for the synthesis of Imidazo [4,5-b]pyridines were based on cyclocondensation of 2,3 pyridinediamine with Carboxylic acid derivates or on condensation with aldehydes. Hence, it is imperative to develop a convenient, efficient, and user friendly method for the synthesis of 2 -substituted-1H-Imidazo [4,5-b]pyridine.

Nowadays, the organic reactions in aqueous media and EtOH have attracted much attention in Synthetic organic chemistry as water is the most abundant, cheapest, and environmental-friendly Solvent. It also exhibits a unique reactivity and selectivity different from conventional organic solvents. A very diverse range of biological activities are associated with 4-thiazolidinones and 2-Azetidinones. Keeping the conjecture in mind, numerous compounds having moiety are Prepared.[17-20]

Scheme :

R=phenyl, 3-chlorophenyl, 4-chlorophenyl, 2-chlorophenyl, 4-methoxyphenyl,3-Methoxyphenyl, 2methoxyphenyl, 4-nitrophenyl, 2- nitrophenyl

EXPERIMENTAL

The IR spectra recorded on brucher-IFS-66 FTIR instrument. 500 Mhz NMR spectra were recorded using tetramethyl silane as an instrument standard in DMSO- d_{6}. Chemical shifts are expressed in ppm and mass spectrum on a Hewelett Packard mass spectrometer operating at 70 ev . The purity of the compounds was checked by TLC and spots were visualized in iodine vapour.

2-(4-bromophenyl)-3H-Imidazo [4,5-b]pyridine(3)

2,3-Diaminopyridine (0.001 m mole) and 4-bromobenzaldehyde (0.001 m mole) in Ethanol containing a few drops of pyridine are refluxed for 5-6 hours. It was then cooled, concentrated and poured into crushed ice and filtered. The solid thus obtained was purified by recrystallization from ethanol.

IR (K Br): $3522.02 \mathrm{~cm}^{-1}(\mathrm{NH}), 3074.53 \mathrm{~cm}^{-1}$ (C-H aromatic), $1583.56 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 1199.72 \mathrm{~cm}^{-1}(\mathrm{C}-$ N).
${ }^{1}$ H NMR in DMSO-d ${ }_{6}$: 7.75(dd, 4H),8.01 (dd, 1H) 8.80 (d,1H), 9.21 (d, 1H), 9.95(brs, 1H). MS:274.9(M+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)hydrazine(4)

Compound 2-(4-bromophenyl)-3H-imidazo [4,5-b]pyridine (3) (0.001 m mole0 a pinch of PTSA And hydrazine hydrate $(0.001 \mathrm{~m}$ mole 0 were taken into a RB flask. The contents were refluxed
For 3-4 hrs. the reaction mixture was washed with ice cold water and the solid obtained was Purified.
IR (K Br) : $3323.35 \mathrm{~cm}^{-1}$, $3280.92 \mathrm{~cm}^{-1}(\mathrm{NH}), 3024.38 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{H}\right.$ aromatic), $1697.36 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$, $1136.07 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N})$.
${ }^{1} \mathrm{H}$ NMR in DMSO-d : 4.52 (drs, 3 H$), 7.73(\mathrm{dd}, 4 \mathrm{H}), 8.08$ (dd,1H), 8.84 (d, 1H),9.25 (d, 1H),12.41(brs, 1H)
MS:226.0(M+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-arylidenehydrazines (5a-i)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)hydrazine (5) (0.001m mole) and aldehyde (0.001 M mole) in Ethanol containing a few drops of pyridine are refluxed for 5-6 hours. It was then cooled, concentrated and poured into crushed ice and filtered. The solid thus obtained was purified by recrystallization from ethanol.

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-phenylidenehydrazines (5a)
IR (K Br) : $3380.92 \mathrm{~cm}^{-1}(\mathrm{NH})^{\prime} 3184.38 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{H}\right.$ aromatic), $1656.85 \mathrm{~cm}^{-1}$, ($\mathrm{C}=\mathrm{N}$), 1166.93 $\mathrm{cm}^{-1}(\mathrm{C}-\mathrm{N})$.
${ }^{1} \mathrm{H}$ NMR in DMSO-d ${ }_{6}$: 7.15-7.31 (m, 6H), 7.61-7.80 (m, 6H), $7.95(\mathrm{dd}, 1 \mathrm{H}), 8.40(\mathrm{~d}, 1 \mathrm{H})$, 9.18 (brs, 1H), 9.50 (brs, 1H)

MS: 313 (m+)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(3-chlorophenylidene)hydrazine (5b)
${ }^{1}$ H NMR in DMSO-d ${ }_{6}$: 7.17-7.32 (m, 6H), 7.63-7.82 (m, 6H), $7.98(\mathrm{dd}, 1 \mathrm{H}), 8.38(\mathrm{~d}, 1 \mathrm{H})$, 9.62 (brs, 1H).

MS: 348 (m+1)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(4-chlorophenylidene)hydrazine (5c)
${ }^{1} \mathrm{H}$ NMR in DMSO-d ${ }_{6}$: 7.16-7.32 (m, 5H),7.60-7.81 (m, 6H), 7.96 (dd, 1H), $8.40(\mathrm{~d}, 1 \mathrm{H})$, 9.20 (brs, 1 H), 9.61 (brs 1 H)

MS: $348(\mathrm{~m}+1)$
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(2-chlorophenylidene)hydrazine (5d)
${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR in DMSO- ${ }_{6}$: 7.15-7.31 (m, 5H), 7.58-7.80 (m, 6H), 7.75 (dd, 1 H$)$, $8.39(\mathrm{~d}, 1 \mathrm{H})$, 9.18 (brs, 1H), 9.60 (brs 1H)

MS: 348 (m+1)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(4-methoxyphenylidene)hydrazine (5e)
${ }^{1} \mathrm{H}^{2}$ NMR in DMSO-d ${ }_{6}: 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.825(\mathrm{~m}, 6 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H})$, $8.37(\mathrm{~d}, 1 \mathrm{H}), 9.17$ (brs, 1 H$), 9.60$ (brs 1H)
MS: 344 (m+1)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(3-methoxyphenylidene)hydrazine (5f)
${ }^{1} \mathrm{H}^{\text {HMR }}$ in DMSO- $\mathrm{d}_{6}: 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.82(\mathrm{~m}, 6 \mathrm{H}), 7.90(\mathrm{dd}, 1 \mathrm{H}), 8.37$ (d, 1H), 9.17 (brs, 1H), 9.60 (brs 1H)
MS: 344 (m+1)
1-(4-(3H-imidazo [4,5-b]pyridine-2-yl)phenyl)-2-(2-methoxyphenylidene)hydrazine(5g)
${ }^{1} \mathrm{H} \quad$ NMR inDMSO-d6;3.80(s,3H),7.16-7.33(m,5H), $\quad 7.66-7.84(\mathrm{~m}, 6 \mathrm{H}), \quad 7.90$ (dd, 1H),8.39(d,1H),9.16(brs,1H),9.62(brs,1H).
MS:344(m+1)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(2-nitrophenylidene)hydrazine (5h)
${ }^{1}$ H NMR in DMSO-d ${ }_{6}$: 7.26-7.40 (m, 5H), 7.65-7.95 (m, 6H), 7.95 (dd, 1H), $8.35(\mathrm{~d}, 1 \mathrm{H})$, 9.20 (brs, 1H), 8.35 (d, 1H), 9.20 (brs 1H), 9.70 (brs 1H) MS: 359 (m+1)

July - August
2014
RJPBCS
5(4)
Page No. 67

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenyl)-2-(4-nitrophenylidene)hydrazine (5i)

${ }^{1}$ H NMR in DMSO-d ${ }_{6}$: 7.25-7.42 (m, 5H), 7.66-7.96 (m, 6H), $7.98(\mathrm{dd}, 1 \mathrm{H}), 8.38(\mathrm{~d}, 1 \mathrm{H})$, 9.20 (brs, 1H), 7.71 (brs, 1H) MS: 359 (m+1)

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2-arylthiazolidin-4-one(6a-i)

To a solution of 1-(4-(3H-imidazo[4,5-b]pyridin-2-yl)phenyl)-2-phenylidenehydrazines (5a) (0.001 m mole) in absolute ethanol thiglycolic acid (0.001 m mole) and anhydrous zinc chloride were refluxed for 8 hr , concentrated, cooled and poured into crushed ice, and then filtered. The solid obtained was purified by recrystalization.

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2-phenylthiazolidin-4-ones(6a)

IR (K Br) : $3442.06 \mathrm{~cm}^{-1}$ (NH$)^{\prime} 2924.85 \mathrm{~cm}^{-1}$ (C-H aromatic), $1119.54 \mathrm{~cm}^{-1}$, (C-N) . ${ }^{1} \mathrm{H}$ NMR in DMSO-d $\mathrm{d}_{6}: 3.95(\mathrm{~d}, 2 \mathrm{H}), 5.61(\mathrm{~S}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}), 7.72(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{dd}, 1 \mathrm{H})$, 8.40 (d, 1H), 9.19 (brs, 1H), 9.52 (brs, 1H) MS: 388.6 (m+1)

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(3-chlorophenyl)thiazolidin-4-one(6b)
${ }^{1} \mathrm{H}$ NMR in DMSO- $\mathrm{d}_{6}: 3.90(\mathrm{~d}, 2 \mathrm{H}), 5.60(\mathrm{~S}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H})$, 7.96 (dd, 1H), 8.41 (d, 1H), 9.20(brs, 1H), 9.55 (brs, 1H) MS: 423 (m+1)

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(4-chlorophenyl)thiazolidin-4-one(6c)
${ }^{1} \mathrm{H}$ NMR in DMSO- $\mathrm{d}_{6}: 3.92(\mathrm{~d}, 2 \mathrm{H}), 5.62(\mathrm{~S}, 1 \mathrm{H}), 7.13(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}), 7.74(\mathrm{~d}, 2 \mathrm{H})$, 7.96 (dd, 1H), 8.42 (d, 1H), 9.21(brs, 1H), 9.60 (brs, 1H) MS: 423 (m+1)

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(2-chlorophenyl)thiazolidin-4-one(6d)
${ }^{1}{ }^{H}$ NMR in DMSO- $d_{6}: 3.96(d, 2 H), 5.61(S, 1 H), 7.14(m, 4 H), 7.32(d, 2 H), 7.75(d, 2 H)$, 7.96 (dd, 1H), 8.43 (d, 1H), 9.25(brs, 1H), 9.61 (brs, 1H) MS: 423 (m+1)

[^0]
3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(3methoxyphenyl)thiazolidin-4-one(6f)

${ }^{1} \mathrm{H}^{2}$ NMR in DMSO- d_{6} : $3.75(\mathrm{~S}, 3 \mathrm{H}), 3.95(\mathrm{~d}, 2 \mathrm{H}), 5.64(\mathrm{~S}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, 2 \mathrm{H})$, 7.75 (d, 2H), 7.96 (dd, 1H), 8.41 (d, 1H), 9.31 (brs, 1H), 9.60 (brs, 1H) MS: 418 (m+1)

```
3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(2-methoxyphenyl) thiazolidin-4-one(6g)
\({ }^{1} \mathrm{H}^{2}\) NMR in DMSO- \(\mathrm{d}_{6}: 3.78(\mathrm{~S}, 3 \mathrm{H}), 3.98(\mathrm{~d}, 2 \mathrm{H}), 5.65(\mathrm{~S}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, 2 \mathrm{H})\), 7.74 (d, 2H), 7.95 (dd, 1H), 8.40 (d, 1H), 9.30 (brs, 1H), 9.61 (brs, 1H) MS: 418 (m+1)
```


3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(2-nitrophenyl)thiazolidin-4-one(6h)
 ${ }^{1} \mathrm{H}$ NMR in DMSO- $\mathrm{d}_{6}: 3.97(\mathrm{~d}, 2 \mathrm{H}), 5.66(\mathrm{~S}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, 2 \mathrm{H}), 7.73(\mathrm{~d}, 2 \mathrm{H})$, 7.96 (dd, 1H), 7.96 (dd, 1H), 8.41 (d, 1H), 9.31 (brs, 1H), 9.62 (brs, 1H) MS: $433(m+1)$

3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(4-nitrophenyl)thiazolidin-4-one(6i)

${ }^{1} \mathrm{H}$ NMR in DMSO- $\mathrm{d}_{6}: 3.96(\mathrm{~d}, 2 \mathrm{H}), 5.65(\mathrm{~S}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}), 7.72(\mathrm{~d}, 2 \mathrm{H})$, 7.95 (dd, 1H), 8.40 (d, 1H), 9.30 (brs, 1H), 9.62 (brs, 1H) MS: 433 (m+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4-arylazetidin-2-ones(7a-i)

To a solution of 3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(2-nitrophenyl) thiazolidin-4-one (6) (0.01 mole) in benzene (50 ml), chloroacetylchloride (0.02 mole)) and triethylamine (0.02 mole) were added dropp wise with constant stirring. The reaction mixture was then refluxed for 6 hr and the excess of benzene was distilled off. Resulting mixture was poured into crushed ice, filtered and the solid obtained was purified by recrystallization from ethanol.

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4-arylazetidin-2-one(7a)
IR (K Br) : $3440.01 \mathrm{~cm}^{-1}(\mathrm{NH})^{\prime} 2923.74 \mathrm{~cm}^{-1}$ (C-H aromatic), $1126.75 \mathrm{~cm}^{-1}$, (C-N) . ${ }^{1} \mathrm{H}$ NMR in DMSO-d ${ }_{6}: 5.05(\mathrm{~d}, 1 \mathrm{H}), 5.50(\mathrm{~d}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{dd}, 4 \mathrm{H}), 8.00(\mathrm{dd}, 1 \mathrm{H}), 8.80(\mathrm{dd}, 1 \mathrm{H})$, 9.23 (d, 1H), 9.90 (brs, 1H), 10.30 (brs, 1H)

MS: $390(\mathrm{~m}+1)$
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(3-chlorophenyl) azetidin-2one(7b)
${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR in DMSO-d ${ }_{6}: 5.10(\mathrm{~d}, 1 \mathrm{H}), 5.51(\mathrm{~d}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 4 \mathrm{H}), 7.73(\mathrm{dd}, 4 \mathrm{H}), 8.08$ (dd, 1H), 8.82 (dd, 1H), 9.20 (d, 1H), 9.91 (brs, 1H), 10.31 (brs, 1H) MS: 425 (m+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(4-chlorophenyl) azetidin-2one(7c)

${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR in DMSO- ${ }_{6}$: 5.06 (d, 1H), $5.52(\mathrm{~d}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 7.74$ (dd, 4 H), 8.06 (dd, 1H), $8.81(\mathrm{~d}, 1 \mathrm{H}), 9.19(\mathrm{~d}, 1 \mathrm{H}), 9.92$ (brs, 1H), 10.30 (brs, 1H)
MS: 425 (m+1)
1-(4-(3H-imidazo
[4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(2-chlorophenyl)-azetidin-2one(7d)
${ }^{1} \mathrm{H}$ NMR in DMSO-d ${ }_{6}: 5.08$ (d, 1H), $5.55(\mathrm{~d}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.75$ (dd, 4 H), 8.10 (dd, 1H), 8.80 (d, 1H), 9.20 (brs, 1H), 9.90 (brs, 1H), 10.35 (brs, 1H)
MS: 391 (m+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(4-methoxyphenyl)-azetidin-2ones(7e)
${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR in DMSO- $\mathrm{d}_{6}: 3.80(\mathrm{~S}, 3 \mathrm{H}), 5.10(\mathrm{~d}, 1 \mathrm{H}), 5.56(\mathrm{~d}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 7.76$ (dd, 4H), 8.08 (dd, 1H), 8.81 (d, 1H), 9.19 (d, 1H), 9.92 (brs, 1H), 10.40 (brs, 1H) MS: $421(m+1)$

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(3-methoxyphenyl)-azetidin-2ones(7f)
${ }^{1}{ }^{H}$ NMR in DMSO- d_{6} : $3.81(\mathrm{~S}, 3 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}), 5.58(\mathrm{~d}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{dd}, 4 \mathrm{H}), 8.10$ (dd, 1H), 8.80 (d, 1H), 9.20 (d, 1H), 9.90 (brs, 1H), 10.35 (brs, 1H).
MS: 421 (m+1)
1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(2-methoxyphenyl)-azetidin-2ones $(7 \mathrm{~g})$
${ }^{1} \mathrm{H}$ NMR in DMSO-d $6: 3.80(\mathrm{~S}, 3 \mathrm{H}), 5.10(\mathrm{~d}, 1 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.76$ (dd, 4H), 8.10 (dd, 1H), 8.81 (d, 1H), 9.20 (d, 1H), 9.92 (brs, 1H), 10.36 (brs, 1H) MS: 421 (m+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(2-nitrophenyl)-azetidin-2ones(7h)
${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR in DMSO-d ${ }_{6}$: $5.06(\mathrm{~d}, 1 \mathrm{H}), 5.58(\mathrm{~d}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 7.74$ (dd, 4 H), 8.08 (dd, 1H), 8.80 (dd, 1H), 9.18 (d, 1H), 9.91 (brs, 1H), 10.32 (brs, 1H) MS: 436 (m+1)

1-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-3-chloro-4(4-nitrophenyl)-azetidin-2one(7i)

${ }^{1} \mathrm{H}$ NMR in DMSO-d ${ }_{6}: 5.08(\mathrm{~d}, 1 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 4 \mathrm{H}), 7.72(\mathrm{dd}, 4 \mathrm{H}), 8.10$ (dd, 1H), 8.82 (dd, 1H), 9.20 (d, 1H), 9.92 (brs, 1H), 10.36 (brs, 1H)
MS: 436 (m+1)

REFERENCES

[1] Chen ST. Dost, G.(merck) U.S. Patent 1992;5:132-216.
[2] Weier RM, Khanna IK, Stealey MA, Julien J. (Searle) U.S. Patent 1993;5:262,426,
[3] Kulkarni SS, Newman AH. Bioorg Med Chem Lett 2007;17:2987.
[4] Temple C, Rose JD, Comber RN, Rener GA. J Med Chem. 30, 1987, 1746; (b) Temple, C., Jr.: Smith, B.H.:Elliott, R.D.:Montgomery, J.A. J Med Chem. 1973:16:292.
[5] Barraclough P, et al. J M J Med Chem 1990;33:2231.
[6] Janseens F, et al. J M J Med Chem 28, 1985, 1943.
[7] Bavestsias V, Sun C, Bouloc N, Reynisson J, Workman P, Linardopoulos S, McDonald E. Bioorg Med Chem Lett 2007; 17:6567.
[8] Coates WJ, Connolly B, Dhanak D, Flynn ST, Worby A. J Med Chem 1993;36: 1387.
[9] Garmise DJ, Komlossy J. J Org Chem 1964;29:3403.
[10] Dubey PK, Ratnam CV. Ind J Chem 1980;19B:863.
[11] Dubey PK, et al. Ind J Chem 2004;43B:952.
[12] Robertson DW, et al. Eur J Med Chem 1986;21:223.
[13] Savarino P, Carpignano VR, Borda A, Barni E. J Heterocycl Chem 1989;26:289.
[14] Singh MP, Sasmal S, Lu W, Chatterjee MN. Synthesis 2000;10:1380.
[15] Ryabukhn SV, Plaskon AS, Volochnyuk DM, Tolmachev AA. Synthesis, 21, 2006, 3715.
[16] Schiffmann R, Neugebauer A, Klen CD. J Med Chem 2006;49:511.
[17] Ketan Mistry and Desai K R. Indian J Chem 2006;45B:176.
[18] Tripti singh, Shalabh Sharma, Srivastava V K and Ashok Kumar. Indian J Chem 2006;45B:1557.
[19] Tejash Kumar J Shah and Vikas A Desai. Arkivoc 2007;xiv:218.
[20] Laxminarayana Eppakayala, Narender Atmakuri, Shiva Shankar Sripelly and Thirumala chary Maringanti. Int J App Chem 2008;4(3):237.

[^0]: 3-(4-(3H-imidazo [4,5-b]pyridin-2-yl)phenylamino)-2(4-methoxyphenyl) thiazolidin-4-one(6e)
 ${ }^{1} \mathrm{H}$ NMR in DMSO- $\mathrm{d}_{6}: 3.76(\mathrm{~S}, 3 \mathrm{H}), 3.93(\mathrm{~d}, 2 \mathrm{H}), 5.63(\mathrm{~S}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H})$, 7.76(d,2H), 7.95 (dd, 1H), 9.25 (brs, 1H), 9.61 (brs, 1H) MS: $418(m+1)$

