

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Chemical Constituents of Arenga tremula.

Consolacion Y Ragasa^{1,2*}, Dalton R Fortin² and Chien Chang Shen³.

¹Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines,

²Chemistry Department, De La Salle University 2401 Taft Avenue, Manila 1004, Philippines ³National Research Institute of Chinese Medicine, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan

ABSTRACT

The dichloromethane extract of the twigs of *Arenga tremula* subsp. *tremula* afforded squalene (1), chlorophyll a (2), monoglycerides (3) and triglycerides (4), while the leaves yielded 2, 4, lutein (5), and a mixture of β -sitosterol (6) and stigmasterol (7). The structures of 1-7 were identified by comparison of their ¹H and/or ¹³C NMR data with those reported in the literature.

Keywords: Arenga tremula, Arecaceae, sugar palm, squalene, β-sitosterol, stigmasterol, lutein, chlorophyll a

*Corresponding author

INTRODUCTION

Arenga tremula subsp. tremula is an ornamental Philippine endemic dwarf sugar palm, locally known as dumayaka [1-3]. The genus Arenga comprises 22 species which are good sources of sugar and starch, used for thatch and basket production and have high potential as ornamental plants [2]. There are two subspecies of Arenga tremula, namely, tremula which is endemic to the Philippines and longistamina Mogea which is found in Hainan, Taiwan and Ryukyu islands [2]. In the Philippines, the petioles and midribs are used to make baskets, while the leaves are used for thatching and wickerwork. In Hainan, it is a source of starch. The young tops are edible although consumption of large quantities may produce toxic effects [2]. The fruit is toxic and the active principle is raphides (calcium oxalate crystals) which is found in the pericarp, while the fruit juice causes skin irritation and blisters [3]. There is no known medicinal use and no reported chemical constituents of *A. tremula*.

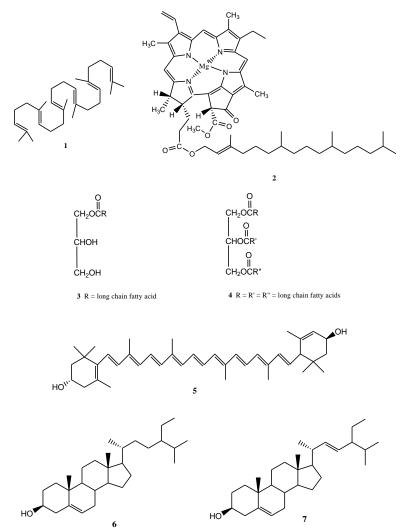


Figure 1: Chemical constituents of *A. tremula*: squalene (1), chlorophyll a (2), monoglycerides (3) and triglycerides (4), lutein (5), β-sitosterol (6), and stigmasterol (7).

5(4)

This study was conducted as part of our research on the chemical constituents of plants endemic to the Philippines [4-24]. We earlier reported the chemical constituents of *Tectona philippinensis* [4, 5], *Diospyros blancoi* [6], *Dillenia philippinensis* [7], *Pycnarrhena manillensis* [8], *Broussonetia luzonicus* [9], *Atalantia retusa* [10], and *Myristica philippensis* [11], The following endemic plants were also investigated: *A. pyramidalis* Cav. Pers. [12], *A. cf. elliptica* [13], and *A. squamulosa* [14] from the genus *Ardisia*; *C. cebuense* [15, 16], *C. griffithii* [17], *C. rupestre, C. nanophyllum* [18], *C. utile* [19], *C. iners* [20], and *C. trichophyllum* [21] from the genus *Cinnamomum*; and *F. pseudopalma, F. ulmifolia* [22], *F. odorata* [23], *F. linearifolia*, and *F. triangularis* [24] from the genus *Ficus*.

We report herein the isolation of squalene (1), chlorophyll a (2), monoglycerides (3) and triglycerides (4) from the twigs; and 2, 4, lutein (5), and a mixture of β -sitosterol (6) and stigmasterol (7) from the leaves of *A. tremula.* To the best of our knowledge this is the first report on the isolation of these compounds from *A, tremula.*

MATERIALS AND METHODS

General Experimental Procedure

NMR spectra were recorded on a Varian VNMRS spectrometer in CDCl₃ at 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR spectra. Column chromatography was performed with silica gel 60 (70-230 mesh). Thin layer chromatography was performed with plastic backed plates coated with silica gel F_{254} and the plates were visualized by spraying with vanillin/H₂SO₄ solution followed by warming.

Sample Collection

The sample was collected from Bataan, Philippines in October 2013. It was identified as *Arenga tremula* subsp. *tremula* at the Jose Vera Santos Herbarium, Institute of Biology, University of the Philippines, Diliman, Quezon City.

Isolation of the Chemical Constituents of A. tremula

The air-dried twigs (101 g) of A. tremula were cut into small pieces, ground using mortar and pestle, soaked in CH_2Cl_2 for three days, and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (2.8 g) which was chromatographed using increasing proportions of acetone in CH_2Cl_2 (10% increment) as eluents. All fractions were monitored by thin layer chromatography. Fractions with spots of the same *Rf* values were combined and rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. The CH_2Cl_2 fraction was rechromatographed in petroleum ether, followed by 1% EtOAc in petroleum ether. The fractions eluted with 1% EtOAc in petroleum ether were combined and rechromatographed (3×) in the same solvent to afford **1** (2 mg). The 10% acetone in CH_2Cl_2 fraction was rechromatographed in petroleum ether, followed by 1% EtOAc in combined and rechromatographed (3×) in the same solvent to afford **1** (2 mg). The 10% acetone in CH_2Cl_2

The fractions eluted with petroleum ether were combined and rechromatographed (2×) using 1% EtOAc in petroleum ether as eluent to afford triglycerides (5 mg). The 30% acetone in CH_2Cl_2 fraction was rechromatographed (4×) using 10% EtOAc in petroleum ether as eluent to afford **2** (3 mg) after washing with petroleum ether, followed by Et₂O. The 70% acetone in CH_2Cl_2 fraction was rechromatographed (3×) using Et₂O:CH₃CN:CH₂Cl₂ (0.5:0.5:9 by volume) as eluent to afford **3** (4 mg).

The air-dried leaves (402 g) of A. tremula were ground in a blender, soaked in CH₂Cl₂ for three days, and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (16 g) which was chromatographed using increasing proportions of acetone in CH_2Cl_2 (10% increment) as eluents. The 30% acetone in CH₂Cl₂ fraction was rechromatographed using 10% EtOAc in petroleum ether, followed by 12.5% EtOAc in petroleum ether, and finally 15% EtOAc in petroleum ether as eluents. The fractions eluted with 10% EtOAc in petroleum ether were combined and rechromatographed $(2\times)$ in the same solvent to afford 4 (6 mg). The fractions eluted with 12.5% EtOAc in petroleum ether were combined and rechromatographed $(3\times)$ in the same solvent to afford a mixture **6** and **7** (7 mg) after washing with petroleum ether. The fractions eluted with 15% EtOAc in petroleum ether were combined and rechromatographed $(2\times)$ in the same solvent to afford **5** (4 mg) after washing with petroleum ether, followed by Et₂O. The 80% acetone in dichloromethane fraction was rechromatographed (3×) using Et₂O:CH₃CN:CH₂Cl₂ (0.5:0.5:9 by volume) as eluent to afford 2 (3 mg) after washing with petroleum ether, followed by Et_2O .

RESULTS AND DISCUSSION

The dichloromethane extract of the twigs of *Arenga tremula* subsp. *tremula* afforded squalene (1) [25], chlorophyll a (2) [26], monoglycerides (3) [27] and triglycerides (4) [28], while the leaves yielded 2, 4, lutein (5) [29], β -sitosterol (6) [30], and stigmasterol (7) [9]. The structures of 1-7 were identified by comparison of their ¹H and/or ¹³C NMR data with those reported in the literature [25-30].

Although there are no reported bioactivities for *A. tremula,* the compounds isolated from the plant have shown diverse bioactivities [31-53].

Squalene (1) significantly suppresses colonic ACF formation and crypt multiplicity. This strengthens the hypothesis that squalene possesses chemopreventive activity against colon carcinogenesis [31]. Squalene has cardioprotective effect which is related to inhibition of lipid accumulation by its hypolipidemic properties and/or its antioxidant properties [32].

Chlorophyll (2) and its various derivatives are used in traditional medicine and for therapeutic purposes [33]. Natural chlorophyll and its derivatives have been studied for wound healing [34], anti-inflammatory properties [35], control of calcium oxalate crystals [36], utilization as effective agents in photodynamic cancer therapy [37-39], and chemopreventive effects in humans [40-41]. A review on digestion, absorption and cancer preventive activity of dietary chlorophyll has been provided [42].

Antimicrobial tests on the monoglyceride (**3**) and triglyceride (**4**) indicated that they exhibited antimicrobial activity against *S. aureus, P. aeruginosa, B. subtilis, C. albicans* and *T. mentagrophytes* [27]. Another study reported that triglycerides showed a direct relationship between toxicity and increasing unsaturation, which in turn correlated with increasing susceptibility to oxidation [43].

Dietary lutein (5), especially at 0.002%, inhibited tumor growth by selectively modulating apoptosis, and by inhibiting angiogenesis [44]. Another study reported that the chemopreventive properties of all-*trans* retinoic acid (ATRA) and lutein may be attributed to their differential effects on apoptosis pathways in normal *versus* transformed mammary cells [45]. A previous study reported that very low amounts of dietary lutein (0.002%) can efficiently decrease mammary tumor development and growth in mice [46].

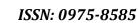
 β -Sitosterol (6) was observed to have growth inhibitory effects on human breast MCF-7 and MDA-MB-231 adenocarcinoma cells [47]. It was shown to be effective for the treatment of benign prostatic hyperplasia [48]. It was also reported to attenuate β -catenin and PCNA expression, as well as quench radical *in-vitro*, making it a potential anticancer drug for colon carcinogenesis [49]. It can inhibit the expression of NPC1L1 in the enterocytes to reduce intestinal cholesterol uptake [59]. It was reported to induce apoptosis mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells [51].

Stigmasterol (7) shows therapeutic efficacy against Ehrlich ascites carcinoma bearing mice while conferring protection against cancer induced altered physiological conditions [52]. It lowers plasma cholesterol levels, inhibits intestinal cholesterol and plant sterol absorption, and suppresses hepatic cholesterol and classic bile acid synthesis in Winstar as well as WKY rats [53].

ACKNOWLEDGMENT

One of the authors (DF) acknowledges a research and scholarship grant from the Department of Science and Technology, Science Education Institute, Accelerated Science and Technology Human Resource Development Program- National Science Consortium (DOST-SEI ASTHRDP-NSC) of the Philippines.

REFERENCES


- [1] De Guzman ED, Fernando ES, Philippine palms. In Guide to the Philippine Flora and Fauna. Natural Resources Management Centre and University of the Philippines, Quezon City, 1986; 4: 145-233.
- [2] Mogea JP, Siemonsma JS. 1996; Arenga Labill. Record from Proseabase. Flach, M. & Rumawas, F. (Editors). PROSEA (Plant Resources of South-East Asia) Foundation, Bogor, Indonesia. http://www.proseanet.org. Accessed from Internet: 22-Mar-2014.
- [3] Siapno AG, Florido LV, Baltazar EM, Asis LE, Cambay MV, Rimando EF, Cadiz RT, Daya MP, Cabrera FR. Res Inform Ser Ecosyst 2009; 21(3): 6.

ISSN: 0975-8585

- [4] Ragasa CY, Tepora MM, Espineli DL, Mandia EH, Rideout JA. J Nat Prod 2008; 71(4): 701-705.
- [5] Ragasa CY, Lee JJ, Lapina M, Mandia E, Rideout JA. Nat Prod Res 2008; 22(9): 820-824.
- [6] Ragasa CY, Puno MRA, Sengson JMAP, Shen C-C, Rideout JA, Raga DD. Nat Prod Res 2009; 23(13): 1252-1258.
- [7] Ragasa CY, Alimboyoguen AB, Shen C-C. Philipp Scient 2009; 46: 78-87.
- [8] Ragasa CY, Tepora MM, Rideout JA. ACGC Chem Res Commun 2009; 23: 31-34.
- [9] Tsai P-W, de Castro-Cruz K, Shen C-C, Ragasa CY. Phcog J 2012; 4(31): 1-4.
- [10] Ragasa CY, Espineli DL, Mandia EH, Raga DD, Don M-J, Shen C-C. Z Naturforsch B 2012; 67b: 426-432.
- [11] Ragasa CY, Torres OB, Tongco JVV, Razal RA, Shen C-C. J Chem Pharm Res 2013; 5(11): 614-616.
- [12] Raga DD, Alimboyoguen AB, Shen C-C, Ragasa CY. Philipp Agric Scient 2011; 94(2): 103-110.
- [13] Raga DD, Herrera AA, Ragasa CY. Chin J Nat Med 2013; 11(2): 128-138.
- [14] Ragasa CY, Espineli DL, Raga DD, Herrera AA, Shen C-C. Chem Nat Compd 2013; 49(2): 388-389.
- [15] Del Fierro RS, Maquilang QMA, Sanjorjo RAS, Tradio MD, Shen C-C, Ragasa CY. J Med Plants Res 2012; 6(11): 2146-2149.
- [16] Ragasa CY, Espineli DL, Agoo EM, del Fierro RS. Chin J Nat Med 2013; 11(3): 264-268.
- [17] Ragasa CY, Espineli DL, Agoo EM, Shen C-C. Chem Nat Compd 2013; 49(1): 127-128.
- [18] Ragasa CY, Espineli DL, Agoo EM, Shen C-C. Chem Nat Compd 2013; 49(4): 757-758.
- [19] Espineli DL, Agoo EM, Shen CC, Ragasa CY. Chem Nat Compd 2013; 49(4): 769-770.
- [20] Espineli DL, Agoo EM, Shen CC, Ragasa CY. Chem Nat Compd 2013; 49(5): 932-933.
- [21] Espineli DL, Agoo EM, Shen CC, Ragasa CY. Chem Nat Compd 2014; 50(2).
- [22] Ragasa CY, Tsai PW, Shen CC. Philipp J Sci 2009; 138(2): 205-209.
- [23] Tsai P-W, de Castro Cruz K, Shen CC, Ragasa CY. Pharm Chem J 2012; 46(4): 225-227.
- [24] Ragasa CY, Torres OB, Shen CC, Bernardo LB, Mandia EH, de Castro Cruz K, Tsai PW. Chem Nat Compd 2014; 50(1): 172-173.
- [25] Inte VM, Ragasa CY, Rideout JA. Asia Life Sci 1998; 7(1): 11-21.
- [26] Ragasa CY, de Jesus J. Res J Pharm Biol Chem Sci 2014; 5(3):
- [27] Ragasa CY, Lorena GS, Mandia EH, Raga DD, Shen C-C. Amer J Essent Oils Nat Prod 2013; 1(2): 7-10.
- [28] Vlahov G. Prog Nucl Mag Res Sp 1999; 35: 341–357.
- [29] Li SH, Zhang HJ, Niu XM, Yao P, Sun HD, Fong HHS. J Nat Prod 2003; 66: 1002-1005.
- [30] Cayme JMC, Ragasa CY. Kimika 2004; *20*(1/2): 5-12.
- [31] Rao CV, Mark HLN, Reddy BS. Carcinogenesis 1998; 19: 287-290.
- [32] Farvin KHS, Anandan R, Hari S, Kumar S, Shing KS, Mathew S, Sankar TV, Nair PGV. J Med Food 2006; 9(4): 531-536.
- [33] Edwards BJ. Physiother 1954; 40: 177–179.
- [34] Kephart JC. Econ Bot 1955; 9: 3–18.
- [35] Larato DC, Pfao FR. Dent J 1970; 36: 291-293.
- [36] Tawashi R, Cousineau M, Sharkawi M. Invest Urol 1980; 18: 90-92.
- [37] Sternberg ED, Dolphin D, Bruckner C. Tetrahedron 1998; 54: 4151-4152.

July - August	2014	RJPBCS	5(4)	Page No. 1484
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0

- [38] Nourse WL, Parkhurst RM, Skinner WA, Jordan RT. Biochem Biophys Res Commun 1988; 151: 506-511.
- [39] Henderson BW, Bellnier DA, Greco WR, Sharma A, Pandry RK, Vaughan LA. Cancer Res 1997; 57: 4000-4007.
- [40] Egner PA, Wang JB, Zhu YR, Zhang BC, Wu Y, Zhang QN. Proc Natl Acad Sci 2001; 98(25): 1401-1406.
- [41] Egner PA, Munoz A, Kensler TW. Mutat Res 2003; 52(3): 209–216.
- [42] Hardwick SJ, Carpenter KH, Law NS, Van Der Veen C, Marchant CE, Hird R, Mitchinson MJ. Free Radic Res 1997; 26 (4): 351-362.
- [43] Ferruzzi MG, Blakeslee J. Nutr Res 2007; 27: 1-12.
- [44] Chew BP, Brown CM, Park JS, Mixter PF. Anticancer Res 2003; 23(4): 3333-3339.
- [45] Sumantran VN, Zhang R, Lee DS, Wicha MS. Cancer Epidemiol Biomarkers Prev 2000; 9: 257.
- [46] Park JS, Chew BP, Wong TS. J Nutr 1998; 128(10): 1650–1656.
- [47] Awad AB, Chinnman M, Fink CS, Bradford PG. Phytomed 2007; 14: 747–754.
- [48] Jayaprakasha GK, Mandadi KK, Poulose SM, Jadegoud Y, Gowda GA, Patil BS. Bioorg Med Chem 2007; 15: 4923-4932.
- [49] Baskar AA, Ignacimuthu S, Paulraj G, Numair K. BMC Comp Alt Med 2010; 10: 24.
- [50] Jesch ED, Seo JM, Carr TP, Lee JY. Nutr Res 2009; 29(12): 859-66.
- [51] Moon DO, Kyeong Jun L, Yung HC, Gi-Young K. Int Immunopharmacol 2007; 7: 1044-1053.
- [52] Ghosh T, TK Maity, J Singh. Orient Pharm Exp Med 2011; 11: 41-49.
- [53] Batta AK; Xu G, Honda A, Miyazaki T, Salen G. Metabolism 2006; 55(3): 292-299.