

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

In Silico Molecular Modeling and Structural Analysis of Peroxidase Enzymes from five different plants species.

Swarnendu Chandra¹, Sirshendu Chatterjee², Sandip K. Bandyopadhyay², and Krishnendu Acharya¹*.

¹Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal - 700019, India. ²Central Research Laboratory, Department of Biochemistry, K.P.C. Medical College & Hospital, Kolkata-700032 India.

ABSTRACT

Upon attacked by pathogens, plants defend themselves by producing array of defense related molecules. Plant peroxidase enzymes are about 300-350 residue long and have multiple isoenzymes that differ in substrate specificity and localization within the plant. In this study, 3D structure of peroxidase enzymes from five different plants was predicted by homology modeling method. The quality of the 3D structure of the model was confirmed by various web based validation programs. When compared secondary and tertiary structure of the model, it showed two peroxidase signature domains (PEROXIDASE_1 and PEROXIDASE_2) are present in the central region. Degree of sequence conserveness showed that sequence size differences do not make any impact on their basic functions.

Keywords: 3D structure, Signature domain, Secondary structure, Tertiary structure

*Corresponding author

INTRODUCTION

Pathogenesis related proteins (PRs) are the important class of proteins that play a vital role in plant defense mechanism by inducing defense enzymes in stressful environment. This PR enzyme boosts the plant defense by catalysis of the last step in the biosynthesis of lignin and other oxidative phenols [1, 2] as well as maintains the pathogenic loads. Amongst the important PR proteins, plant peroxidases (EC 1.11.1.7) also known as PR-9 or Ypr9 or Prx are important in diverse cellular functions throughout the plant life cycle, probably due to plenty of enzymatic isoforms (isoenzymes) and to the versatility of their enzyme-catalyzed reactions [3]. Plant peroxidases are involved in auxin metabolism, lignification, suberization, cross-linking of cell wall components, phytoalexin synthesis and detoxification of hydrogen peroxidase [4, 5, 6]. Peroxidase is involved in the production or modulation of active oxygen species which may play important roles behind reducing pathogen viability and spread. Prx plays a central role in triggering the hypersensitive reaction (HR) in the crosslinking and lignification of the cell wall and in transducing signals to adjacent non-challenged cells [2]. Strengthening of cell wall barrier synthesis involves the influence of peroxidase enzyme, which may restrict further entry by the pathogen [7] and it was also found to inhibit the spore germination and mycelial growth of certain fungi [8].

Peroxidase enzymes are heme-containing glycoprotein and usually classified as acidic, basic or neutral according to their isoelectric point [5]. These enzymes are encoded by a large multigene family in plants. More than 100 expressed sequence tags (ESTs) encoding different peroxidase isoenzymes are found in Arabidopsis [4]. This enzyme is composed of a single polypeptide chain of about 300 residues in length [9] and they contain ferriprotoporphyrin IX as a prosthetic group. Each plant has numerous peroxidase isoenzymes that differ in substrate specificity and localization within the plant. In addition, isoperoxidases within some species and those from different species exhibit size heterogeneity. Isozymes have the molecular weight range from 30000 to 50000 daltons [10]. Peroxidase enzymes are generally categorized into three classes based on sequence alignments and biological origin [11]. Class I includes the intracellular peroxidases found in the cytosol or chloroplasts. Class II and III are known as secretory peroxidases from fungus and plant sources respectively. Both of these two classes of peroxidases posses monomeric glycoproteins with four conserved disulfide bridges and two calcium ions, but the position of the disulfides differs from each other [9]. However, sequence or structural differences do not make any impact on their basic functions. Therefore, the present study aims to examine the amino acid sequence analysis of peroxidase enzymes of different model plant species viz. Arabidopsis thaliana (Family: Brasicaceae); Capsicum annuum (Family: Solanaceae); Nicotiana tabacum (Family: Solanaceae); Oryza sativa (Family: Poaceae); Zea mays (Family: Poaceae). Since the 3D structures of proteins can yield essential information about their functional mechanisms, and hence an initiative was taken to in silico structural characterization and analyses of these enzyme using molecular modeling techniques. Degree of sequence conserveness and their evolutionary relationship were also studied to comment on their functional relatedness.

5(4)

MATERIALS AND METHODS

Sequence retrieval and analysis

Sequence retrieval

Nucleotide sequences of plant peroxidase enzymes were retrieved in FASTA format from NCBI (National Centre for Biotechnology Information; http://www.ncbi.nlm.nih.gov/) nucleotide data bank (Table 1). Plants chosen for this study are: *Arabidopsis thaliana*, *Capsicum annuum*, *Nicotiana tabacum*, *Oryza sativa* and *Zea mays*. These sequences were then converted to their corresponding protein sequences using an online DNA to Protein conversion tool (insilico.ehu.es/translate/) and used in further experimental process.

Fingerprint analysis

Sequences in FASTA format were submitted to the ScanProsite tool (http://prosite.expasy.org/scanprosite/) for searching the fingerprint. Sequence logo was created using WebLogo program (http://weblogo.berkeley.edu/logo.cgi; Crooks et al., 2004).

Secondary structure analysis

The secondary structure of the proteins was analyzed using three different online software viz. GORIV, HNN and SOPMA (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_server.html).

Three dimensional structure predictions and analysis

Consensus amino acid sequences of peroxidases of each plant obtained using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and Jalview (Waterhouse et al., 2009) were used for 3D structure prediction. Sequences were submitted to the ModWeb server (https://modbase.compbio.ucsf.edu/scgi/modweb.cgi) for automated structure prediction. Initial models obtained from the server were further analyzed for suitable structure selection. Selected structures were refined by energy minimization using SWISS PDB VIEWER (Version 4.0.1). Structural optimization involved energy minimization (100 steps each of steepest descent and conjugate gradient methods) *in vacuo* with the GROMOS96 43B1 parameter set without reaction field. This process of minimization was repeated until satisfactory conformational parameters were obtained. Each loop was separately regularized applying position constraints to the rest of the atoms of the protein, which were 2 amino acids away from the desired loop by energy minimization followed by evaluation of the structural parameters. The final structure was energy minimized 100 steps each with steepest descent and conjugate gradient methods keeping all the atoms of the protein free.

PROCHECK and ERRAT were used for checking the stereochemical quality of the refined structures in each step of energy minimization. PROSA was used to determine the overall model quality of the final structures [12]. Ribbon structure and electrostatic surface

potential map were generated using UCSF CHIMERA (Version1.4) software. Structures which passed the quality check were deposited in PMDB database.

Plant name	Accession number	Protein	PEROXIDASE_2	Sequence	PEROXIDASE_1	Sequence
		length	Peroxidases active	region	Peroxidases	region
			site signature		proximal neme-	
Arabidoncic	ail 1965 10600 l	252		62 72		101 201
thaliana	gi 180510009	352	AASILKLIIFHDC	02-73		191-201
triununu	gi 18874553	329				189-199
	gi 145359134 gi 145359134	312			DIVIVILSGGHTI	1/3-183
	gi 145358744	317		F7 69		180-190
	gi 30080383	320		57-08		183-193
	gi 18252200	320	AAPIIKIVIIIFHDC	57-08		183-193
	gi[17003479]	329		62.72		101 201
	gi 24099020	249		61 72		191-201
	gi 23306302	320		60.71		185-195
	gi 21500904	329		62 72		101 201
	gi 20400178	221		61 72		191-201
Cansicum	gil20200405	224		60.71		190-200
annuum	gi[222159900]	324		60-71		100-190
umuum	gi 17066702	222	AASIIKLIIFHDC	00-71		100-190
	gi 11024997E	222		60.71		100-190
Nicotiana	gi[110348873]	322		07 109		100-190
tabacum	gi 62252070	260		97-108		227-237
tubucum	gi[03233079]	220		50 70		197 107
	gi 14031030 gi 14031048	323		67-78		107-197
Oruza sativa	gi 14031048 gi 113860754	225		62-73		190-200
Oryzu sutivu	gi[113809734]	122		65-76	DVVALSGGITT	190-200
	gi 2443430]	311	GASIL RI hEHDC	54-65	DMVAI SGAHTI	177-187
	gi 2429291	314	GASIVRI hFHDC	54.65	DMVALSGAHTI	179-189
	gi 2429289	314	GASIL RI hEHDC	55-66	DIVALSGAHTI	178-188
	gi 2429287	315	GASIL RI hEHDC	52-63	DMVALSGAHTI	180-190
	gi 2429285	317	GASIL RI hEHDC	58-69	DMVALSGAHTI	181-191
Zea mays	gil1624609271	320	GASIL RI hFHDC	62-73	DMVAI SGAHTI	187-197
	gi 162460927	308	GAsILRLhFHDC	47-58	DLVALSGAHTI	175-185
	gi 162460661	324	GAavIRMIFHDC	66-77	DLVVLSGAHTV	197-207
	gi 226532577	339			DLVVLSGSHTI	197-207
	gi 226530538	316	GAsiIRLfFHDC	57-68	DMTALSGAHTV	185-195
	gi 226530300	352	APglIRLhFHDC	61-72	DMVVLSGSHTI	190-200
	gi 226528592	327	GAsILRLfFHDC	65-76		
	gi 226510116	327	VGstVRLfFHDC	61-72	DLVALSAAHSV	190-200
	gi 226510060	333	AAslVRLhFHDC	61-72	DVVALSGGHTI	189-199
	gi 226509889	307	APaaLRLfFHDC	59-70	EMVALLGAHTL	187-197
	gi 226507319	328	AGplLRLhFHDC	58-69	DLVVLSGGHTL	184-194
	gi 226506661	329	GAglIRMhFHDC	52-63	DMVTLSGAHTV	181-191
	gi 226495736	338	AGplLRLhFHDC	65-76	DLAVLSGAHTL	192-202
	gi 226495500	360	AAgmLRVfFHDC	70-81	ELVALSGAHTL	199-209
	gi 226493662	324			DLVWLSGAHTI	182-192
	gi 226493477	323	GAsiVRLfFHDC	69-80	DMVALSGAHTI	197-207
	gi 226492566	346			DLAVLSGAHAI	209-219
	gi 226491561	339	GAalVRLiFHDC	62-73	ELVILTGAHSI	192-202
	gi 226491045	317	APatLRLfFHDC	60-71	DMIALSGGHTI	188-198
	gi 162464361	360	AAglIRLhFHDC	59-70	DMVVLSGAHTV	187-197

Table 1: Signature sequences and their regions

July - August

Multiple Sequence Alignment and Cluster Analysis of peroxidase enzyme

Consensus amino acid sequences of the peroxidase enzyme of five plants (i.e. *Arabidopsis thaliana, Capsicum annuum, Nicotiana tabacum, Oryza sativa* and *Zea mays*) in FASTA format subjected to multiple sequence alignment using CLUSTALW [13]. Phylogenetic analyses were conducted in MEGA4 [14] using the Maximum Parsimony (MP) method [15] with 1000 bootstrap value [16]. The Close-Neighbor-Interchange algorithm [17] with search level 3 [16, 17] was used to obtain the MP tree. All positions containing gaps and missing data were eliminated from the dataset (Complete Deletion option).

RESULTS

Sequence retrieval and primary sequence analysis

In the present study we have taken peroxidase enzymes of five different species e.g. *A. thaliana, C. annuum, N. tabacum, O. sativa* and *Z. mays.* For each species we found more than one mRNA sequences. Therefore all of them were downloaded from NCBI database in FASTA format and converted to corresponding protein sequences using the mentioned tool. Result shows that the protein length varied from 312 to 352 amino acids for *A. thaliana,* 322-332 amino acids for *C. annum,* 329-360 amino acids for *N. tabacum,* 122-335 amino acids for *O. sativa* and 307-360 amino acids for *Z. mays.* The average length of the peroxidases of all the 5 species under study is 331 (Table 1). ScanProsite result of peroxidase enzymes revealed that the sequences contain PEROXIDASE_2 (Peroxidases active site signature) and PEROXIDASE_1 (Peroxidases proximal heme-ligand signature) (Table 1) along with the other functionally important sites CK2 Phosphorylation, Myristoylation, PKC Phosphorylation, N-glycosylation etc. In this present study, only the peroxidase domains were considered for further structural analysis of these enzymes.

These two peroxidase domains having conserved sequences of twelve and eleven amino acid lengths respectively and are present in all the selected plant species with a few exceptions (Table 1). Both the sequences are found to be variable at several positions. From the WebLogo (Figure 1) it is observed that in PEROXIDASE_1 sequence Lysine at 5th and Histidine at 9th position is conserved for all the five plants. In case of PEROXIDASE_2 Arginine at 6th position and last four positions i.e. Phenylalanine, Histidine, Aspertic acid and Cystine (9th to 12th) are conserved in all the five chosen plant species (Figure 1).

Sequence based secondary structure analysis

Secondary structure of the selected five plant species shows that α helix ranges from 27.91 to 40.84% in *A. thaliana*; 25.28 to 39.91% in *C. annuum*; 34.23 to 42.74% in *N. tabacum*; 33.90% to 43.11% in *O. sativa* and 34.69% to 41.42% in *Z. mays*. Random coils ranges from 44.80% to 53.00% in *A. thaliana*; 44.39% to 59.83% in *C. annuum*; 44.64% to 52.20% in *N. tabacum*; 44.89% to 53.12% in *O. sativa* and 46.10% to 51.56% in *Z. mays* (Table 2). From the percentage of occurrence of the above three secondary structures it was observed that all the peroxidase enzyme from five different plants predominantly have a tendency to have alpha (α) helical structure followed by random coil and then by beta (β) sheet.

HNN GOR IV SOPMA Name of the α helix R. Coil Ex. α helix Ex. R. Coil α helix Ex. R. Coil Plant Strand Strand Strand Α. 40.84, 38.55, 12.86, 48.63, 27.91, 19.09, 53.00, 14.36, 44.80, thalian ±2.56 ±2.41 ±2.23 ±4.18 ±1.49 ±3.39 ±2.70 ±0.81 ±2.60 а С. 14.57, 35.29, 50.15, 25.28, 14.89, 59.83, 39.91, 15.70, 44.39, annuu ±6.25 ±4.90 ±6.02 ±5.63 ±2.98 ±3.72 ±3.10 ±2.58 ±0.93 m Ν. 40.14, 12.49, 47.38, 34.23, 13.58, 52.20, 42.74, 12.64, 44.64, tabacu ±8.03 ±6.03 ±2.17 ±3.15 ±2.12 ±1.58 ±2.75 ±1.78 ±1.02 т О. 43.11, 9.54, 47.35, 33.90, 12.97, 53.12, 40.76, 14.34, 44.89, sativa ±4.08 ±4.24 ±5.86 ±2.38 ±6.11 ±2.64 ±2.16 ±2.69 ±3.61 Z. mays 41.42. 10.37. 48.21. 34.69. 13.75. 51.56, 39.73. 14.17, 46.10. ±5.25 ±3.95 ±6.93 ±3.52 ±4.25 ±4.77 ±2.74 ±1.46 ±2.63

Table 2: Comparative analysis of secondary structures of peroxidase enzymes (values are the average of all the peroxidase enzymes of individual plants with ±SD values)

3D structure prediction and analysis

Model construction, refinement and stereochemical evaluation

Table 3: Steriochemical evaluations of the predicted models

ε	ize	Model ID (obtained from PMDB database)	Model data		Corresponding template		Model quality		
Organis	Protein s		Modeled Segment	Size	Sequence ID (%)	PDB Code	PDB Segment	PROSA (Z score) Overall Model quality	ERRAT Overall Quality Factor
A. thaliana	355	PM0077500	30-340	311	57	1GWU	1-306	-9.52	90.099
C. annuum	322	PM0077478	29-322	294	58	1SCH	2-294	-8.23	87.063
N. tabacum	360	PM0077479	57-356	300	39	1BGP	1-308	-7.13	92.784
O. sativa	316	PM0077481	25-315	291	67	1SCH	2-294	-9.28	91.519
Z. mays	363	PM0077499	38-354	317	52	1PA2	1-305	-8.55	90.291

In the present study we have found that the peroxidase enzymes of the five plant species have varied sequence length and secondary elements but their function are same. Since the structure of a protein gives much more insight in the function of protein than its sequence, 3D structure of all the peroxidases under study was predicted using molecular modeling techniques. Consensus sequence of peroxidase from each plant species was used for structure prediction. Sequences were submitted to the ModWeb server for tertiary structure prediction. Two models of each peroxidase were received from the server based on different templates. Best model of each of the plant peroxidase was determined by sequence identity and length coverage (Table 3).

5(4)

Qualities of the backbone of the modeled structures were checked with PROCHECK. It was observed that although most of the ϕ - ψ pairs were distributed in the most favored and additional allowed regions of the Ramachandran's plot, the backbone conformation of some of the amino acids were in the generously allowed and disallowed regions as shown in figure 2 and values are given in table 4. These were grouped into different segments of the structure and refined by energy minimization until most of the backbone conformations fell in the desired regions (Figure 2).

Model ID		% Bad	% Bad			
	Most Additional		Generously	Disallowed	back	back
	Favored	Allowed	Allowed	Region	bone	bone
	Region	Region	Region		bond	angle
PM0077500	90.5	9.5	0.0	0.0	0.00	0.06
PM0077478	89.5	9.3	1.2	0.0	0.00	0.00
PM0077479	87.5	11.0	0.8	0.8	0.00	0.00
PM0077481	91.8	7.4	0.8	0.8	0.00	0.00
PM0077499	87.8	11.4	0.4	0.4	0.00	0.25

Table 4: Ramchandran's plot statistics after energy minimization.

The overall model quality (Z score) and overall quality factor of the model were measured using PROSA and ERRAT. These values were compared with the relevant x-ray structures of the model used in homology modelling (Table 3). These structural parameters of the models indicate that the modeled structures are reliable and can be used for further study. The final models of the target protein of each species were deposited in the Protein Model Data Base (Table 3).

Analysis of secondary structure and electrostatic potential surface of the peroxidase enzymes

Most of the members of the peroxidase enzymes exhibit extensive ordered secondary structures of α -helix, random coils and β -sheets. All the modeled structures of the peroxidase enzymes contained two peroxidase motifs namely PEROXIDASE_1 and PEROXIDASE_2 which resides in the helical region of all the five peroxidase enzymes, depicted in red and blue color in the models respectively (Figure 3). These regions of all the 5 plant peroxidase enzymes are superposed. The result highlights the conserve nature of the two domains e.g. PEROXIDASE_1 and PEROXIDASE_2 and points out their functional importance in plant defence. Upon detailed analysis of the peroxidase catalytic domain, it was observed that it consists two helical motif PEROXIDASE_2 and PEROXIDASE_1 containing twelve and eleven amino acid residues respectively. Peroxide binding domain (PEROXIDASE_2) which is mainly responsible for catalysis of H₂O₂, contains neutral (Ala, Ser, Leu, Phe, Cys, Ile etc.), positive (Arg, His) and negative (Asp) amino acid residues.

From ESP analysis it can be concluded that the binding region is present in the core of the structure and mainly acidic in nature and this region is astounded by alternatively placed positive, neutral and negative amino acid residues (Figure 4).

Figure 1: WebLogo of signature domains of peroxydase enzymes (PEROXIDASE_1 and PEROXIDASE_2 domains).

2014

Figure 2: Ramachandran's plot of the predicted *A. thaliana* peroxidase structure (PM0077500). (A) Initial model and (B) Final model. Red region, deep yellow, light yellow and white regions show the core, allowed, generously allowed and disallowed region. Residues of initial model in generously allowed and disallowed region are highlighted in red color.

Figure 3: Five peroxidase structures were superposed and two active domains remained in the helical region. Helix coloured in red represents PEROXIDASE_1 (Peroxidases proximal heme-ligand signature) and blue represents PEROXIDASE_2 (Peroxidases active site signature) domain.

Figure 4: Peroxidase active domain representation in model PM0077500. (A) In Ribbon representation P1: PEROXIDASE_1 domain and P2: PEROXIDASE_2 domain. B. Electrostatic potential surface (ESP) of the model. Active domain region is encircled with red colour. In electrostatic potential surface diagram positive, negative and neutral molecular surface potential were shown in blue, red and white respectively.

А	(A)
A thaliana	MGFSMMTOLNAAVLLIVFCLILMLSS
Cannuum	NSISNNSFAAVAAIFSLVLLCSNQ
Ntabacum	MAFRLSHLSLALSLLALALAGVAIYRNTYEAASKGFOTLSPELDLLESAASILTLNGNAE
O sativa	NASASSSLMLLVAAALASAA
Z mays	MAASPMLLASVLLALAAVVAAVALLALAAALPAV
A_thallana	SEACLAPDF YARSCPNAEKIIRDAIGNAIHNDPRIAASLLRLHFHDCFVRGCDASVLIDS
C_annuum	CHAQLSSTFYDRACPNALNTIRKSVRQAVSAERRMAASLIRLHFHDCFVQGCDASILLDE
N_tabacum	QNSDLKLTFPLSPCACAFSAVR-SVLNAIDRDRRMAASLIRLHFHDCFVDGCDGGVLLDD
O_sativa	SAQGLSATFYDTSCPRALSIIKSAVTAAVNSEPRMGASLLRLHFHDCFVQGCDASVLLSG
Z_mays	ASAQLSPGFYSSSCPNAEAIVRSAVAAAVAAEPRMAASLLRLHFHDCFVRGCDASVLLDS
	* * .*. * 11.11 *1 1 *1.***************
A thaliana	TSS-NKAEKDAPPNKSLSLRGFDVIDRIKAALEKAPNCPRTVSCADIITLAARDAVVLS-
Cannuum	TPT-IVSEKTALPN-LGSVRGYEIIDDAKRELEKTCPGIVSCADILAVAARDASTLVG
Ntabacum	IPG-SFOEEDASPNNNNSARGFEVIEOAKORVKDT-CPNTPVSCADILAIAARDSVVKLG
O sativa	TNEONAGPNK-GSLEGENVIDSIKAOIEAI-CNOTVSCADILAVAARDSVVALG
7 mays	TPGGFT&FKD&GPNNNLSL PGFDVTD&TK&AVF&&=-CPGTVSC&DTL&L&APDAVVLLS
	PERTURASS I DOMAN
A theliene	-GGPSUSUPI, GPPDGLISNKAFATGNI.PPPTSNI.TOLKALFANVGLNPLKDLVALSGAHT
Cannuum	
Ntehecum	
A cabacan	- OF OTHER ADDRESS AND ADDRESS AND TO ADDRESS
O_Saciva	
2_mays	IGGPS#DVPLGRRDGRVSSRSERNDNLPPPISILRQLIRRFRRRGLS-VEDLVRLSGRI)
h shalitana	
A_challana	IGF ARCSSFANRE INFNI INRPDFSINFQT ARE LARDEPANGNON IVALNADP
C_annuum	I GOAGCE LE RORTINNGIDIDAGE ASTRAKKCE QEDONGNLAPEDL
N_tabacum	IGF TRCASACNRL YDSNNKNPAARLKCNCPVTQNDTNLQQL
O_sativa	IGQAQCQNFRDRIYNETNIDSAFAAQLKANCPRTIGSGDSNLAPLDT
Z_mays	UGRAHCSSFASDRLYNDTNPGALADVDPSLDPAYAAQLRPRCPGGSNDDQDDTNLAPMDP
1995	
(B)	
(-)	76 0. amaan
	20 .
	N. tabacum
	O, sativa
	0. 00.10
	A thaliana
	A. thanana
	7 mays
	2. mays

Figure 5: Multiple Sequence Alignment and Phylogenetic Analysis of consensus peroxidase amino acid sequences from five different plant species. (A) Multiple Alignments was done using ClustalW. Boxes depicted PEROXIDASE_1 and PEROXIDASE_2 signature domais. Highly conserved amino acid residues are marked with '*'. (B) The phylogenetic tree of consensus peroxidase sequences from five plants. All the peroxidase sequences were diverged from a common ancestral origin.

Multiple Sequence Alignment and Phylogenetic Analysis

The multiple sequence alignments of the five peroxidases from five different taxa are shown in figure 5. The residues within the PEROXIDASE_1 and PEROXIDASE_2 domains are evolutionary conserved, indicating their structural and functional importance in plant pathogenic response mechanism.

The consensus Phylogenetic tree of all the five plant peroxidase enzymes of our interest was constructed using MEGA4 [14] (Figure 5). A phylogeny, or evolutionary tree, represents the evolutionary relationships among a set of organisms. The root of the tree represents the ancestral lineage, and the tips of the branches represent the descendants of that ancestor. The evolutionary history was inferred using the Maximum Parsimony method [15]. The most parsimonious tree with length = 456 is shown (Figure 5). The consistency

index is (0.772358), the retention index is (0.533333), and the composite index is 0.500585 (0.411924) for all sites and parsimony-informative sites (in parentheses). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches [14]. The MP tree was obtained using the Close-Neighbor-Interchange algorithm [17] with search level 3 [16, 17] in which the initial trees were obtained with the random addition of sequences (0 replicates). All positions, containing gaps and missing data, were eliminated from the dataset (Complete Deletion option). There were a total of 302 positions in the final dataset, out of which 60 were parsimony informative. Phylogenetic analyses were conducted in MEGA4 [14].

The Phylogenetic tree states that Peroxidase enzyme of *C. annuum* and *N. tabacum* is evolutionary closely related to each other than either is to *O. sativa* and *A. thaliana* whereas, Peroxidase enzyme of *Z. mays* was found to be most diverged from the common ancestral origin (Figure 5). This finding indicates that though, the core remained relatively conserved, some segments of the peroxidases varied a lot during evolution.

DISCUSSION

Peroxidase (EC 1.11.1.7) oxidizes a vast array of compounds (hydrogen donors) in the presence of H2O2. Plant peroxidases are heme-containing glycoproteins and are usually classified as acidic, neutral, or basic, according to their isoelectric points. Higher plants possess a large number of peroxidase isoenzymes, which are encoded by multigene families [5]. Several physiological functions for peroxidases in plants have been reported, such as removal of reactive oxygen species (ROS), biosynthesis of lignin [2], induction of defense during pathogenesis [18, 19]. The biochemistry and enzymology of the plant peroxidase superfamily has been reviewed extensively [4, 11], but further progress towards the understanding of biological chemistry of plant peroxidases at the structural level is still required. The mechanisms of reaction with peroxide and reducing substrates can only be described in detail with the increasing availability of the suitable in silico models generated on the basis of crystallographic, spectroscopic and kinetic data. This will also be helpful in learning about the actual role of specific isoenzymes along with identification of physiological substrates for each peroxidase enzymes. In this work five consensus peroxidase enzyme models from five different plants were used for the study. These five consensus sequences varied in size. But superposed structures of five peroxidase enzyme revealed that the two peroxidase signature domains remained in the same position (Figure 3) making no impact on their basic functions. It can be concluded that further structural analysis of peroxidase and its isoenzymes will offer new insights into the relationship between enzymes and their physiological substrates.

ACKNOWLEDGEMENT

The authors are thankful to Dr. Sudip Kundu of Department of Biophysics and Molecular Biology, University of Calcutta, for his generous help and support during this work.

REFERENCES

- [1] Hammerschmidt R, Nuckels EM, Kuć J. Physiol Mol Plant Pathol 1982; 20:73-82.
- [2] Lamb C, Dixon R A. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 251-275.
- [3] Passardi F, Penel C, Dunand C. Trends Plant Sci 2004; 9:534-540.
- [4] Hiraga S, Ito H, Yamakawa H, Ohtsubo N, Seo S, Mitsuhara I, Matsui H, Honma M, Ohashi Y. Mol Plant–Microbe Interact 2000; 13: 210-216.
- [5] Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A. Appl Microbiol Biotechnol 2003; 60: 665-670.
- [6] Almagro L, Gómez Ros LV, Belchi-Navarro1 S, Bru R, Ros Barceló A, Pedreño MA. J Exp Bot 2009; 60: 377-390.
- [7] Bruce RJ, West CA.Plant Physiol 1989; 91: 889-897.
- [8] Joseph LM, Tan TK, Wong SM. Can J Bot 1998; 76: 2119-2124.
- [9] Schuller DJ, Ban N, van Huystee RB, McPherson A, Poulos TL. Structure 1996; 4:311-321.
- [10] Conroy J M, Saltcr RD. Mol. Immunol 1982; 19: 659-663.
- [11] Welinder, K.G. Curr Opin Struct Biol 1992; 2: 388–393.
- [12] Chatterjee S, Laskar A, Chatterjee A, Mandal C, Chaudhuri S. Int J Biol Med Res 2011;2: 346-359.
- [13] Thompson JD, Higgins DG, Gibson TJ. Nucleic Acids Res 1994; 22:4673-4680.
- [14] Tamura K, Dudley J, Nei M & Kumar S. Molecular Biology and Evolution 2007; 24:1596-1599.
- [15] Eck RV, Dayhoff MO. Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, Maryland. 1966.
- [16] Felsenstein J. Evolution 1985; 39:783-791.
- [17] Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York. 2000.
- [18] Acharya K, Chandra S, Chakraborty N, Acharya R. Arch Phytopathol Plant Prot 2011; 44: 1335-1342.
- [19] Chandra S, Chakraborty N, Sarkar S, Acharya R. Arch Phytopathol Plant Prot 2011; 44: 1501-1511.