

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Antimicrobial Activity of *Helitropium Curassavicum* a Mangrove Plant.

IV Kasi Viswanath*, KRS Prasad, JV Shanmukh Kumar.

Department of Chemistry, K L University, Green fields, Guntur, Andhra Pradesh, India.

ABSTRACT

Extraction of *Heliotropium curassavicum*. Aerial parts resulted . The crude extract was evaluated for their antibacterial and antifungal activity. The results indicate that Ethyl acetate and methanolic extracts, exhibited significant antimicrobial activity.

Keywords: Heliotropium curassavicum, Extract, Antimicrobial activity.

*Corresponding author

2014

INTRODUCTION

Heliotropium curassavicum Var.. argentinum is widely employed in gout, rheumatism, neuralgias, arteriscolerotic disorders, muscular algias, phlebitis,varix and other illnesses [1]. Tw basic proteins were identified from this Mangrove and studies indicate that they possess potential antimicrobial activity [2] and cardiovascular system activity [3]. In Saudi Arabia, *Heliotropium curassavicum* L. and *Heliotropium bacciferum* (Boraginaceae) have become two of the most common polycarpic weeds infesting many Wadis and newly reclaimed fields at many areas of Taif regions[4,5]. Because of their vigorous growth and natural ability to colonize the disturbed salt affected sand flats, the species spreads rapidly invading the newly reclaimed lands and the surrounding fields as a troublesome weed [6,7]. The success of different *Heliotropium* species as weeds can be attributed to a large extent to their ability to produce adventitious root buds which allow for the plant's perennation and spread . The aim of the current work is to study the antimicrobiological studiesof the species belongs to the genus *Heliotropium* (Boraginaceae); namely, *Heliotropium curassavicum* L.

EXPERIMENTAL

Materials and Methods

The stem of *Heliotropium curassavicum*, was collected from Gullalamoda (16°35'N latitude and 84°15'E longitude) Nagayalanaka estuary, Krishna District, Andhra pradesh of India in Dec. 2012. Shade dried and finely powdered stems (3 Kgs) of Heliotropium *curassavicum* were extracted with Ethyl acetate and methanol successively.

Study of Microbial activity

Literature survey reveals that this mangrove plant crude extract exhibits Antimicrobial activity. Hence in this present investigation it is proposed to study the activity of the extract as well as the crystalline constituents. The results are presented in Table II and I. The Antimicrobial activity of Heliotropium *curassavicum*: (i) Methanolic extract & (ii) Ethyl acetate extract, were investigated by the cup diffusion method of Murry et al. [8], on nutrient agar medium for bacteria and potato dextrose agar for Fungi. The sterile medium (20ml) in Petri dishes were uniformly smeared with culture of tested organisms. Wells of 6mm diameter were made in each Petri dish, to which 50µl of the different concentrations of plant extracts; concentration 1µg/µl was added. The study also include with Beacon Multi Disc antibiotics and Bavistin fungicide standard drug for comparison. For each treatment, triplicates were examined and recorded.

The plates were incubated at 37° C for 18 hrs for Bacteria or at 25° C for 48 hrs for fungi. The diameter of the resulting zone of inhibition was determined with Hi Antibiotic Zone Scale. The data were presented in Table –I and II.

Ten pathogenic bacteria and ten phytopathogenic fungi were obtained from the microbial type culture collection (MTCC) Chandigarh. and ATCC from New Delhi as detailed below.

Micro Organisms: - Bacteria

G +Ve

Ustilago maydis

Bacillus Subtilis	MTCC - 2274	
Bacillus pumilis	MTCC - 2296	
Enterococcus faecalis	MTCC - 0439	
Micrococcus luteus	MTCC - 1538	
Streptococcus faecalis	MTCC - 0459	
G – Ve		
Erwinia Carotovora	MTCC - 1428	
Escherichia coli	ATCC - 9637	
Klebsiella pneumoniae	MTCC - 2405	
Pseudomonas marginalis	MTCC - 2758	
Proteus vulgaris	MTCC – 0426	
	Micro Oga	anisms :- Fungi
Acremonium strictum	MTCC -3072	
Aspergillus flavus	MTCC -1884	
Aspergillus niger	MTCC -1881	
Cladosporium herbarum	MTCC -2143	
Fusarium oxysporum	MTCC -1755	
Lasiodiplodia theobromae	MTCC -3068	
Penicillium expansum	MTCC - 2006	
Penicillium chrysogenum	MTCC -1996	
Physoderma maydis	MTCC -2802	

MTCC -1474

RESULTS AND DISCUSSION

Phytochemical studies on this species has resulted the identification of different extracts. The results obtained in this microbial study indicate a prominent antimicrobial activity among microbes tested against *Heliotropium curassavicum* (Ethyl acetate and Methanolic extracts). Activity was more pronounced against human pathogenic bacteria. Out of the ten bacteria screened, seven showed significant antibacterial Activity as evidenced by zone of inhibition .and the data is recorded in Table –I.

Investigations on fungal species, viz) *Aspergillus flavus* and *Lasiodiplodia theobromae*, which are important post-harvest seed and fruit rot disease causing fungi; the zone of inhibition against the plant extract and the compounds are significant. The data is presented in Table-II.

In case of some fungi viz) *Fusarium oxysporum, Acremonium strictum and Ustilago maydis* the Ethyl acetate and Methanolic extracts possess antimicrobial activity against these organisms. The results showed that the Ethyl acetate and methanolic extracts of this mangrove species exhibits the synergistic effect of the compounds.

The increasing prevalence of multidrug resistant strains of untreatable microbial infections adds urgency to the search for new infection fighting strategies. This in vitro screening of plant extract and compound, for antimicrobial bioassay, infers their potential use in the management of diseases caused by microbes.

Table I: Antibacterial activity of Heliotropium curassavicum : Methanolic & Ethyl acetate extracts

Micro organisms	Minimum inhibitory concentration (100mg/ml) ^a of extracts Zone of Inhibition (mm)		Beacon multidiscs for Standard Antibiotics						
	EtOAC	MeOH	CL5	CZ30	XO30	SP5 J	10 A	K30 OF5	
	extract	extract	5µg/disc	30µg/disc	30µg/disc 5	µg/disc 10	µg/disc 30)μg/disc 5μg/	disc
Bacillus Pumilis (MTCC - 2296) +Ve	21	21	25	20	20	27	15	25	27
Enterococcus faecalis (MTCC - 0439) +Ve	NA	NA	15	NA	NA	NA	NA	NA	12
Micrococcus luteus (MTCC - 1538) +Ve	23	19	24	15	NA	22	NA	20	23
Streptococcus faecalis (MTCC - 0459) +Ve	15	NA	22	NA	26	16	NA	16	18
Escherichia coli (ATCC - 1937) -Ve	22	25	17	12	10	17	NA	17	23
Klebsiella pneumonia (MTCC - 2405) -Ve	14	11	20	12	NA	20	8	18	20
Proteus vulgaris (MTCC - 0426) -Ve	23	25	20	8	10	20	NA	10	20

Values including diameter of the well (06.0mm), are the mean of three replicates.a = 50µl of solution (50mg/ml) was applied to each well, NA = Not Active

Used antibiotics names: - CL-Ciprofloxacin, CZ=Cettazidine, XO=Ceftriaxone, SP= Sparfloxacin, J=Gentamycin, AK=Amikacin, OF= Oflixacin

Table II: Antifungal activity of Heliotropium curassavicum : Methanolic & Ethyl acetate extracts

Micro Organisms	Minimum inhibitory concentration of extracts(100mg/ml) ^a Zone of Inhibition(mm)		Standard Fungicide Minimum inhibitory concentration of Bavistin Zone of		
	EtOAc extract	MeOH extract	mg/ml inhibition		
Ascremonium strictum (MTCC - 3072)	15	12	0.01	14	
Aspergillus flavus (MTCC - 1884)	14	16	0.01	19	
Aspergillus niger (MTCC - 1881)	10	12	10	19	
Cladosporium herbarum (MTCC - 2143)	18	15	0.01	16	
Fusarium oxysporum (MTCC - 1755)	17	16	100	23	
Lasiodiplodia theobromae (MTCC - 3068)	18	17	6	13	
Penicillium expansum (MTCC - 2006)	19	16	0.001	15	
Penicillium chrysogenum (MTCC - 1996)	18	20	0.001	15	
Physoderma maydis (MTCC -2802)	17	17	0.1	12	
Ustilago maydis (MTCC - 1474)	30	20	0.1	14	

REFERENCES

- [1] Carballo M, Mudry MD, Larripa IB, Villamil E, D'Aquino M. Mutat Res 1992; 279(4):245-53.
- [2] Chen H, Tan RX, Liu ZL ,Zhang Y, Yang. J Nat Prod 1996;59: 668-670
- [3] Prasad V, Srivastava S, Varsha and Verma HN. Plant Sci 1995; 10: 73-82.
- [4] Farrag HF. Int Res J Plant Sci 2012;3(8): 147-157.
- [5] Farrag HF, Sliai AM, Mhmas TF. Int Res J Biotechnol 2013;4(3): 47-60.
- [6] Hegazy AK, Soliman MI, Mashaly IA. Arab Gulf J Scient Res 1994; 12(3): 525-545.
- [7] Farrag HF. 2007. Allelopathic Potential of some Invasive Weeds in Egypt. Ph.D. Thesis, Botany Department, Faculty University, Cairo Universi
- [8] Murry PR, Baron EJ, Pfaller MA, Tenover FC, YolkenH R. Manul of Clinical Microbiology 6th Edition, ASM Press, Washing ton DC, 1995;15-18.