

Research Journal of Pharmaceutical, Biological and Chemical

Sciences

Synthesis and Evaluation of New Novel Heterocycles Containing Benzothiazoles (1, 3) for Pharmacological Screening

Ashok Kumar KV¹* B Gopalakrishna², E Jayachandran³, Ramkrushna³, and Babarao Sawandkar³

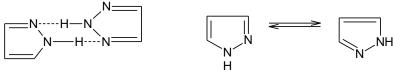
¹Department of Pharmaceutical Chemistry, Bapuji Pharmacy College, Davanagere-577 004 Karnataka, India. *Vinayaka Mission's University, Salem, Tamil Nadu India.

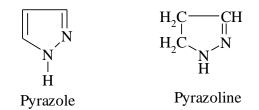
²Department of Pharmaceutical Chemistry, R.R. College of Pharmacy, Bengaluru,-560 090, Karnataka, India. 3Department of Pharmaceutical Chemistry, SCS College of Pharmacy, Harapanahalli, Davenagere District, Karnataka, India.

ABSTRACT

Various 1-(7-chloro-6-fluoro-1,3-benzothiazol-2-yl)-3-methyl-1*H*-pyrazol-5-ol containing different functional groups have been synthesized by condensing 7- Chloro-6-Fluoro-2-Hydrazinyl-1,3-Benzothiazole with Ethyl Aceto Acetate in presence of ethanol. The identities of compounds were confirmed on the basis of their spectral (IR, ¹HNMR and MASS) data. Further, they have been screened for their antimicrobial, and anti-inflammatory activities.

Keywords; Benzothiazole, Ethyl aceto acetate, Fluorine, Pyrazolo.


*Corresponding author


INTRODUCTION

The rapid progress of organic Fluorine chemistry [1-5] since 1950 has been translated as a pathfinder to invent useful biodynamic agents in Medicinal and Biochemistry. The new generation antibiotics like Norfloxacin, Ciproflaxacin, Flufloxacin, Sporfloxacin and Ofloxacin which were incorporated with fluorobenzene moiety proved their efficacy as potent bio active molecules.

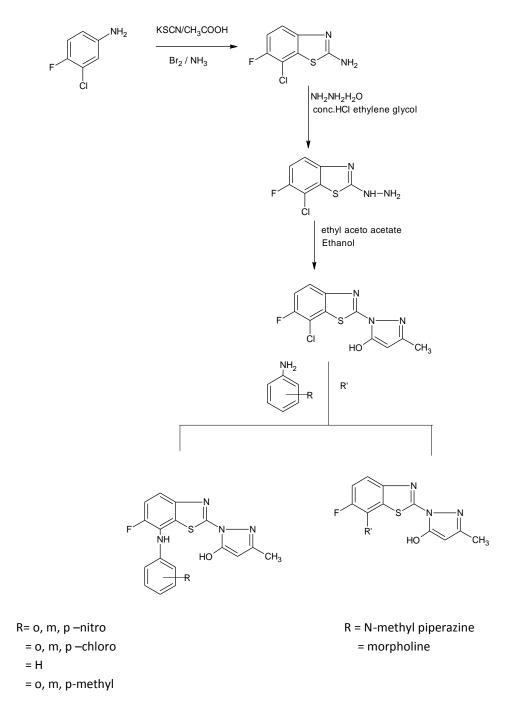
Pyrazole [6-10] is a colorless solid, m.p. 70°C. This high value (compared with 1-alkyl or aryl substituted pyrazoles) is due to intermolecular hydrogen bonding which results in a dimmer. Pyrazole is a tautomeric substance; the existance of tautomerism cannot be demonstrated in pyrazole itself, but it can be inferred by the consideration of pyrazole derivatives.

Pyrazole derivatives constitute an interesting class of organic compounds, which are associated with diverse chemical and pharmacological properties. Pyrazolines have received considerable attention in recent years. Pyrazoline derivatives occupy a unique place in field or medicinal chemistry due to a wide range or biological activities exhibited by them.

Based on the above observations we have synthesized some Fluoro-Benzothiazolo-Pyrazolo derivatives starting with fluoro-chloro-aniline, in hope of getting pharmacological agents with broad spectrum of clinical activity.

MATERIALS AND METHODS

Melting points were determined by open capillary tube method and are uncorrected. T.L.C was run on silica gel G plates using butanol, ethyl acetate and chloroform (1:2:1) as developing solvent for the purity of the compounds. I.R. Spectra were recorded on Shimadzu FTIR Spectrophotometer by using NUJOL MULL technique.


Synthesis of 1-(7-chloro-6-fluoro-1,3-benzothiazole-2-yl)-3-methyl-1H-pyrazol- 5-ol.

21.7 gm (0.1mol) of hydrazino benzothiazole mix with 13.6 ml (0.1mol) of ethyl aceto acetate in a round bottom flask into the 40 ml ethanol reflux for 2hrs and later excess of

ethanol was distilled of and poured onto the crushed ice. The product obtained was filter and recrystalised form ethanol.

To 0.01 mol of 1-(7-chloro-6-fluoro-1,3-benzothiazole-2-yl)-3-methyl-1H-pyrazol-5-ol was treated with equimolar quantities of various substituted aniline, morpholine, piperazine and diphenylamine refluxed for 2 hours in oil bath in presence of 30 ml N,N- dimethyl formamide (DMF). The mixture was cooled and poured in to crushed ice. The solid separated was filtered off, dried and crystallized from alcohol and benzene.

Scheme

Biological Activities [11-17]

Anti-microbial Activity

The synthesized compounds are screened against bacterias like *staphylococcus* aureus (Gram +ve) and Escherichia coli (Gram -ve) and Bacillus subtillis (Gram +ve) and Pseudomonas aureus (Gram -ve) and fungi like Candida albicans and Aspergillus niger to know their antimicrobial activity (by cup plate method).

Anti-inflammatory activity (In-vitro) [18-22]

The synthesized compounds are screened for anti-inflammatory activity by using inhibition of albumin denaturation technique which was studied according to Jayachandran E. and G.M. Sreenivasa with slight modification.

The standard drug and test compounds were dissolved in minimum amount of dimethyl formamide (DMF) and diluted with phosphate buffer (0.2 M, pH 7.4). Final concentration of DMF in all solutions was less than 2.0%. Test solution (1 ml) containing different concentrations of drug was mixed with 1 ml of 1% mM Bovine albumin solution in phosphate buffer and incubated at 27 $^{0} \pm 1$ 0 C in incubator for 15 min. Denaturation was induced by keeping the reaction mixture at 60 $^{0} \pm 1$ 0 C in water bath for 10 min. After cooling the turbidity was measured at 660 nm (UV-Visible Spectrophotometer SL-159, Elico India Ltd.). Percentage of inhibition of denaturation was calculated from control where no drug was added. Each experiment was done in triplicate and average was taken. The Ibuprofen was used as standard drug.

RESULTS AND DISCUSSION

Anti-bacterial activity

Synthesis and pharmacological screening of 1-(7-chloro-6-fluoro-1,3-benzothiazole-2-yl)-3-methyl-1H-pyrazol-5-ol.were tested for the antibacterial activity against following bacteria;

a)	i) Staphylococcus aureus(gram +ve)	ii) Streptococcus aureus(gram +ve) and
----	------------------------------------	---

b) iii) Escherichia coli(gram –ve). iv) psuedomonas(gram –ve).

The compounds R₁, R₂, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₄, and R₁₅ showed promising antibacterial activity and R₄ and R₁₃ show significant antibacterial activity against *Staphylococcus aureus* (gram +ve).

Compounds R_1 to R_{15} , showed promising antibacterial activity against, *E.coli* (gram – ve) and *pseudomonas aeruginosa (gram -ve)*

Compounds R_1 , R_2 , R_3 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , and R_{15} showed promising antibacterial activity and R_{14} shows significant antibacterial activity against *Streptococcus aureus* (gram +ve).

SI. No	Name of the compounds	Mean zone of inhibition (in mm)*			
		Staphylococcus aureus		Streptococcus aureus	
		1 mg/ml	2 mg/ml	1 mg/ml	2 mg/ml
01	Procaine penicillin	20	21	18	20
03	R ₁	10 (0.50)	12 (0.60)	10 (0.55)	13 (0.65)
04	R ₂	10 (0.50)	10 (0.5)	9 (0.50)	12 (0.60)
05	R ₃	9 (0.45)	14 (0.7)	10 (0.55)	11 (0.55)
06	R ₄	16 (0.80)	11 (0.55)	14 (0.77)	15 (0.75)
07	R ₅	11 (0.55)	12 (0.60)	14 (0.77)	15 (0.75)
08	R ₆	14 (0.70)	10 (0.5)	13 (0.72)	15 (0.75)
09	R ₇	12 (0.60)	14 (0.7)	11 (0.61)	14 (0.70)
10	R ₈	12 (0.60)	13 (0.65)	10 (0.55)	13 (0.65)
11	R ₉	12 (0.60)	10 (0.5)	12 (0.66)	15 (0.75)
12	R ₁₀	9 (0.45)	13 (0.65)	12 (0.66)	14 (0.70)
13	R ₁₁	10 (0.50)	14 (0.7)	11 (0.61)	13 (0.65)
14	R ₁₂	9 (0.45)	12 (0.60)	10 (0.55)	11 (0.55)
15	R ₁₃	10 (0.50)	16 (0.80)	12 (0.66)	13 (0.65)
16	R ₁₄	11 (0.55)	12 (0.60)	15 (0.83)	16 (0.80)
17	R ₁₅	10 (0.50)	9 (0.45)	13 (0.72)	15 (0.75)

ANTIBACTERIAL ACTIVITY

ANTIBACTERIAL ACTIVITY

	Name of the compounds	Mean zone of inhibition (in mm)*			
SI. No		E.coli		Pseudomonas	
		1 mg/ml	2 mg/ml	1 mg/ml	2 mg/ml
01	Streptomycin	23	24	20	21
03	R ₁	13 (0.56)	16 (0.66)	10 (0.50)	12 (0.54)
04	R ₂	11 (0.47)	14 (0.58)	15 (0.75)	17 (0.77)
05	R ₃	10 (0.43)	11 (0.45)	12 (0.60)	14 (0.63)
06	R ₄	14 (0.60)	16 (0.66)	11 (0.55)	12 (0.54)
07	R ₅	12 (0.52)	15 (0.62)	11 (0.55)	13 (0.59)
08	R ₆	12 (0.52)	15 (0.62)	11 (0.55)	14 (0.63)
09	R ₇	10 (0.43)	14 (0.58)	11 (0.55)	12 (0.54)
10	R ₈	14 (0.60)	15 (0.62)	11 (0.55)	12 (0.54)
11	R ₉	13 (0.56)	15 (0.62)	12 (0.60)	14 (0.63)
12	R ₁₀	11 (0.47)	12 (0.50)	10 (0.50)	11 (0.55)
13	R ₁₁	10 (0.43)	13 (0.54)	10 (0.50)	12 (0.54)
14	R ₁₂	10 (0.43)	14 (0.58)	11 (0.55)	13 (0.59)
15	R ₁₃	10 (0.43)	13 (0.54)	11 (0.55)	12 (0.54)
16	R ₁₄	11 (0.47)	13 (0.54)	14 (0.70)	15 (0.71)
17	R ₁₅	13 (0.56)	14 (0.58)	13 (0.65)	16 (0.76)

	Name of the compounds	Mean zone of inhibition (<i>in mm</i>)*			
SI. No		Candida albicans		Aspergillus fumigates	
		1mg/ml	2mg/ml	1mg/ml	2mg/ml
01	Ciclopiroxol amine	22	24	18	20
02	R ₁	17 (0.77)	18 (0.75)	12 (0.66)	13 (0.65)
03	R ₂	15 (0.68)	18 (0.75)	16 (0.88)	17 (0.85)
04	R ₃	13 (0.59)	15 (0.62)	12 (0.66)	17 (0.85)
05	R ₄	16 (0.72)	17 (0.70)	16 (0.88)	18 (0.90)
06	R ₅	15 (0.68)	17 (0.70)	16 (0.88)	17 (0.85)
07	R ₆	17 (0.77)	19 (0.79)	13 (0.72)	15 (0.75)
08	R ₇	17 (0.77)	18 (0.75)	15 (0.83)	16 (0.80)
09	R ₈	15 (0.68)	17 (0.70)	14 (0.77)	16 (0.80)
10	R ₉	16 (0.72)	17 (0.70)	17 (0.94)	18 (0.90)
11	R ₁₀	14 (0.63)	15 (0.62)	17 (0.94)	18 (0.90)
12	R ₁₁	18 (0.81)	19 (0.79)	15 (0.83)	17 (0.85)
13	R ₁₂	14 (0.63)	17 (0.70)	16 (0.88)	17 (0.85)
14	R ₁₃	16 (0.72)	18 (0.75)	17 (0.94)	18 (0.90)
15	R ₁₄	14 (0.63)	16 (0.66)	14 (0.77)	17 (0.85)
16	R ₁₅	17 (0.77)	18 (0.75)	13 (0.72)	15 (0.75)

ANTIFUNGAL ACTIVITY

 $Activity index = \frac{Test \ compound}{Standard \ compound}$

Anti-fungal activity

The compounds were tested for antifungal activity against *Candida albicans* and *Aspergillus fumigatus*. Among the compounds tested R₂, R₄, R₅, R₇, R₉, R₁₀, R₁₁, R₁₂, and R₁₃showed significant antifungal activity against *Aspergillus fumigatus*.

CompoundsR₁,R₂,R₃,R₄,R₅,R₆,R₇,R₈,R₉,R₁₀,R₁₂, R₁₃,R₁₄ and R₁₅showed promising antifungal.

Anti- inflammatory activity (In-vitro model)

Among the compounds tested R_8, R_9, R_{12}, R_{13} and R_{15} showed promissing antiinflammatory activity compared to standard drug Ibuprofen.

SI No	Name of the compounds	Absorbence value (Mean ± SE)	Inhibition of denaturation (in %)
01	Control	0.087	-
02	Diclofenac sodium	0.155	93.75%
03	R ₁	0.109	25.00%
04	R ₂ R ³	0.112	28.00%
05	R ³	0.125	43.67%
06	R_4	0.128	47.712%
07	R ₅	0.130	49.42%
08	R ₆	0.110	26.43%
09	R ₇	0.118	35.62%
10	R ₈	0.132	51.72%
11	R ₉	0.135	55.17%
12	R ₁₀	0.125	43.67%
13	R ₁₁	0.127	45.97%
14	R ₁₂	0.140	60.90%
15	R ₁₃	0.131	50.57%
16	R ₁₄	0.117	34.48%
17	R ₁₅	0.133	52.87%

ANTI-INFLAMMATORY ACTIVITY

ACKNOWLEDGEMENT

The authors are thankful to The Principal Bapuji Pharmacy collage, Davangere for providing necessary facilities to carryout this work.

REFERENCES

- [1] Feller RJ. Fluorine Chem 1995; 33: 366.
- [2] Greco Micheal N, Hangman William E. Chem Abstr 1992; 117; 131109 z.
- [3] Sutoris V. Chem Abstr 1991; 10683584 f.
- [4] Wollesdrof OW Jr, Schwam H. Chem Abstr 1989; 111: 194656 x.
- [5] Scholewald, Ronald D. Chem Abstr 1984; 1002069678 c.
- [6] Anandarajagopal K, Anbu Jeba Sunilson J, Illavarasu A, hangavelpandian N, Kalirajan R. Int J Chem Tech Res 2010;2(1):45-49,
- [7] Vertika Gautam, Viney Chawla, Pankaj K. Sonar and Shailendra K. Saraf. E-J Chem 2010, 7(4), pp1190-1195
- [8] Kalirajan R, Leela Rathore, Jubie S, Gowramma B, Gomathy S, Sankar S and Elango K. Indian J Pharm Educ Res 2010;44(4)
- [9] Abdel-Rahman Farghaly. ARKIVOC 2010 (xi) 177-187
- [10] Yuvaraj S, Sunith DK, Ahmed Riyaz TK, Soumya EN., Biji PK, Prajitha PP. Hygeia 2009;1(1):36-37.
- [11] Gurupadaiah BM, Jayachandran E, Shivakumar B, Nagappa AN, Nargund LVG. Ind J Heterocyclic Chem 1998; 7: 213.
- [12] Peclzar, Reid, Cohn. Antibiotics and other chemotherapeutic agents Microbiology, TMH ed, TATA-Mcgraw-Hill Publishing House 1989; 466-93.
- [13] Basavaraja HS, Sreenivasa GM, Jayachandran E, Nargund LVG and Sreenivasa Rao D. Ind J Hetro Chem 2005; 15: 69-70.

- [14] Nagendra Rao R, Jayachandran E, Sreenivasa GM and Jyothi TM. Oriental J Chem 2005; 21(2): 327-330.
- [15] Perumal R, Jayachandran E, Nargund LVG, Shivakumar B, Sreenivasa GM and Shankariah MM. Oriental J Chem 2005; 21(2): 377-378.
- [16] Indian Pharmacopeia 1995.
- [17] Sreenivasa GM, Jayachandra E and Shivakumar B. Ind J Hetro Chem 2004; 14: 89-90.
- [18] Paul A Insel. Analgesic, antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout, Goodman and Gilman's the pharmacological basis of therapeutics. 9th ed. International edition. McGraw-Hill health professions division New York; 1995; pp617-57.
- [19] Rang HP, Dale MM, Ritter JM. Anti-inflammatory and immuno-supressant drugs, pharmacology, Third Edition, International Student Edition, Churchill Livingstone Edinuburgh 1995; pp246-66.
- [20] Srinivasa GM, Jayachandran E, Shivakumar B, Sreenivasa Rao D. Synthesis and pharmacological screening of 2-[3-amino,5-s-met carboxamido pyrazol-1-yl]6fluoro,7-substituted (1,3)benzothiazole; Oriental Journal of Chemistry, 2004; 20(1); pp103-110.
- [21] Sreenivasa Rao D, Jayachandran E, Sreenivasa GM, Shivakumar B. Oriental J Chem 2005; 21(1), pp113-116.
- [22] Gelios, Rao MNA. Ind J Exp Biol 1998; 26.