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ABSTRACT 

 
Chemoinformatics is a modern computational tool that works by bringing together both information 

technology and chemistry to solve problems related to drug discovery. These methods can also be used in 
chemical and allied industries in various other forms. Chemoinformatics gives us an opportunity to transform the 
data obtained via linking the two fields into knowledge which can then be extended to make proper and better 
decisions in areas such as drug discovery, understanding chemical interaction, standardization of drug 
manufacturing protocols etc. The primary application of chemoinformatics is in the storage, indexing and search of 
information relating to compounds. The efficient search of such stored information includes topics that are dealt 
with in computer science as data mining, information retrieval, information extraction and machine learning. 
Chemoinformatics can help us to carry out virtual experiments, which provides insights as to how our body might 
actually respond to the drug. Apart from that the technique is very fast; so that the time is saved along with it no 
practical working is required which is an added advantage. However everything in Chemoinformatics is  
hypothetical and we cannot surely say that the drug will act the way it was predicted too.As more drug discovery 
research is carried out in academia, institutes and small companies, and solutions will require pieces from 
chemoinformatics, bioinformatics and other disciplines, chemoinformatics knowledge and tools should be made as 
widely available as possible. All problems in chemistry require novel approaches for managing large amounts of 
chemical structures and data and for modelling complex relationships. This is where chemoinformatics methods 
can come in.  
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INTRODUCTION 

 
The first computer based system was established over 40 years ago. The tem 

chemoinformatics was defined by F.K. Brown in 1998. With all the problems at hand in 
chemistry, complex relationships, profusion of data and lacks of necessary data, owing to this 
problem the new field of chemo informatics came into existence. Chemoinformatics is a means 
of bringing together chemistry and information technology for making rapid analysis without 
actual experimentation. One of the important applications of Chemoinformatics is the 
development of models linking chemical structure and various molecular properties. Thus the 
use of I.T and chemistry has played an important role in the area of drug discovery and 
organization of data. Today about 45 million chemical compounds are known and this number 
is increasing by several millions every year. All this data thus collected is stored in a database 
and can be made accessible to all. This in one way has a potential to create a revolution by 
making available a lot of useful information; which can be used for understanding the chemistry 
behind drug discovery. It is an important scientific discipline; standing on the interface between 
chemistry, biology and computer science [1]. 
 

Chemoinformatics is a generic term that encompasses the design, creation, 
organization, management, retrieval, analysis, dissemination, visualization, and use of chemical 
information. Clearly, the transformation of data into information and of information into 
knowledge is an endeavor needed in any branch of chemistry not only in drug design. The 
information collected is not only useful for drug discovery, but can also be used for data 
analysis in industries such as paper and pulp, dye and allied industries [2].  Three major tasks of 
structure‐property / activity relationships, design of reaction / syntheses and structure 
elucidation are tackled by making use of prior information, and of information that has been 
condensed into knowledge [3]. The amount of information that has to be processed is often 
quite large. This immense amount of information can be processed only by electronic means, 
by the power of computer. This is how chemoinformatics is useful [4]. 
 

This review paper deals with history, scope and fundamentals of chemoinformatics, 
relations of chemoinformatics with other disciplines, chemoinformatics as a tool in drug 
discovery and its future prospects. 
 

MAJOR ASPECTS OF CHEMOINFORMATICS 

 
1. Information Acquisition and Management: Methods for collecting data (mainly 

experimental).    Development of databases for storage and retrieval of information. 
2. Information Use: Data analysis, correlation and model building. 
3. Information Application: Prediction of molecular properties relevant to drugs, virtual 

screening of chemical libraries, system chemical biology networks. 
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HISTORY  
 
There is no particular point in time that determines when chemoinformatics was 

founded or established. It slowly evolved from several, often quite humble beginnings. 
Scientists in various fields of chemistry struggled with the development of computer methods, 
which allowed them to manage the enormous amount of chemical information and to find 
relationships between the structure and properties of a compound. During the 1960s some 
early developments appeared that led to a flurry of activities in the 1970s [2]. The first, and still 
the core, journal for the subject, the Journal of Chemical Documentation, started in 1961 (the 
name Changed to the Journal of Chemical Information and computer Science in 1975). Then the 
first book appeared in 1971 (Lynch, Harrison, Town and Ash, Computer Handling of Chemical 
Structure Information). The first international conference on the subject was held in 1973 at 
Noordwijkerhout and every three years since 1987. The term Chemoinformatics was given by 
Brown in 1998. With all the problems at hand in chemistry, complex relationships, profusion of 
data, lack of necessary data, quite early on the need was felt in many areas of chemistry to 
have resort to informatics methods. These various roots of Chemoinformatics often go back 
more than 40 years into the 1960s [5]. 
 

RELATIONS OF CHEMOINFORMATICS WITH OTHER DISCIPLINES 
 

Chemoinformatics and Machine learning although machine learning is widely used for 
structure property modeling, chemoinformatics can be considered as a very specific area of its 
application. The specificity of chemoinformatics results from (i) the nature of chemical objects, 
(ii) the complexity of the chemical universe and (iii) a possibility to take into account an extra-
knowledge. The basic chemical object is a graph (or hyper graph), rather than simple fixed-sized 
vector of numbers as in the typical applications in mathematical statistics and machine learning. 
This dictates the need to apply graph theory, to develop novel descriptors and structured graph 
kernels, and to apply machine learning methods capable of dealing with structured discrete 
data. 
 

The second important distinction comes from the fact that the chemical data result from 
an explorative process in a huge chemical space rather than from specially organized sampling. 
Hence, they cannot be considered as representative, independent and identically distributed 
sampling from a well defined distribution. Thus, special approaches are Chemoinformatics as a 
Theoretical Chemistry Discipline needed to treat this problem: various strategies to explore 
chemical space, the “applicability domain” concept, the active learning approach, etc. *6+. 
 

Finally, one can use the relationships between different properties issued from 
physicochemical theory. (For example, the Arrhenius law could be particularly useful upon the 
modeling the rate constants). These relationships could be integrated into chemoinformatics 
workflow as an external knowledge. 
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1. Chemoinformatics and Chemmetrics 
 

Massart [7] has defined chemometrics as “a chemical discipline that applies 
mathematics, statistics and formal logic (a) to design and select optimal experimental 
procedures; (b) to provide maximum relevant chemical information by analyzing chemical data; 
and (c) to obtain knowledge about chemical systems”. Generally, chemometrics requires no 
information about chemical structure and, therefore it overlaps with chemoinformatics only in 
the area of application of machine learning methods. It is widely used in experiment design, 
chemical engineering, analytical chemistry and treatment of spectra – fields where an 
exhaustive treatment of multivariate data is needed. 

 
2. Chemoinformatics and Bioinformatics 

 

Unlike chemoinformatics dealing with “chemical size” molecules, bioinformatics uses 
computational tools to study the structure and function of biomolecules (proteins, nucleic 
acids). This is a broad field mostly involving 3D (force field and quantum mechanics 
calculations) and 1D (sequence alignment) modeling. In the latter, a biomolecule is represented 
as a string of characters (building blocks). Graph and fixed size vector models used in 
chemoinformatics are very rarely used in bioinformatics. In this sense, chemo and 
bioinformatics are “complementary”. On the other hand, there are many examples of 
interpenetration of these fields. Thus, in docking calculations, protein structures could be 
generated by bioinformatics tools, whereas some scoring functions involve vector 
representation of ligands. Another way to combine bio- and cheminformatic approaches is 
related to the construction of protein-ligand descriptors or fingerprints based on available 3D 
information about protein-ligand complexes. Thus, Tropsha et al. developed CoLiBRI descriptors 
calculated for a pseudo molecule constructed from interacting atoms of the protein and the 
ligand. Marcou and Rognan *8+ have developed “interaction fingerprints” accounting for eight 
interaction types per each protein atom interacting with the ligand: hydrophobic; aromatic 
(face to face); aromatic (edge to face); H-bond (protein donor atom); H-bond (protein acceptor 
atom); ionic (positively charged protein atom); ionic (negatively charged protein atom); metal 
complexation., Langer et al.[9] have reported a technique to build pharmacophoric ligand 
models based on the analysis of 3D protein-ligand structures. 
 

A promising way to describe ligand–receptor complexes concerns construction of 
protein-ligand kernels (PLK) as products of “chemical” ligand–ligand (LLK) and “biological” 
protein–protein kernels (PPK). The resulting feature space for PLK is a tensor product of the 
features spaces corresponding to LLK and PPK. Machine learning models involving PLK are 
based on the idea that similar ligands bind to similar proteins. Using these kernels, one can 
predict binding potency of both different ligands with respect to a given protein, and different 
proteins with respect to a given ligand. Several articles describing PPK have been published. 
Erhan et al. combined “chemical” kernels based on MOE descriptors and “biological” kernels 
based on protein- ligand “interaction fingerprints”. Faulon et al. used the signature molecular 
descriptors to calculate “chemical” and “biological” Tanimoto kernels. Jacob and Vert *10+ 
combined a Tanimoto kernel for the ligands and several types of kernels for the proteins. In 



          ISSN: 0975-8585 
 

July-September      2013           RJPBCS              Volume 4 Issue 3    Page No. 479 

particular, for PPK they compared either protein sequences or EC numbers. Bajorath et al. used 
a linear kernel for the ligands and protein-protein kernels calculated from sequence identity 
matrix. 
 
APPLICATIONS OF CHEMOINFORMATICS 
 

I)  Fields of Chemistry 
 

The range of applications of chemoinformatics is rich indeed; many field of chemistry 
can profit from its methods. 
 

The following lists different areas of chemistry and indicates some typical applications of 
chemoinformatics. It has to be emphasized that this list of applications is by far not complete. 
 

1. Chemical Information  
 

a)  Storage and retrieval of chemical structures and associated data to manage the flood 
Data  

b)  Dissemination of data on the internet  
c)  Cross-linking of data to information 

 

2. All fields of chemistry prediction of the physical, chemical, or biological properties of 
compounds 
 

3. Analytical Chemistry analysis of data from analytical chemistry to make predictions on the 
quality, origin, and age of the investigated objects  
 
a) Elucidation of the structure of a compound based on spectroscopic data 

 

4. Organic Chemistry  
 
a) Prediction of the course and products of organic reactions  
b) Design of organic syntheses 

 

5. Drug Design  
 
a) Identification of new lead structures  
b) Optimization of lead structures  
c) Establishment of quantitative structure activity relationships  
d) Comparison of chemical libraries  
e) Definition and analysis of structural diversity planning of chemical libraries  
f) Analysis of high-throughput data  
g) Docking of a ligand into a receptor  
h) de novo design of ligands  
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i) Modeling of ADME-Tox properties  
j) Prediction of the metabolism of xenobiotics 
k) Analysis of biochemical pathways Varied as these areas are and diversified as these 

applications are, the field of chemoinformatics is by far not fully developed. There are 
many areas and problems that can still benefit from the application of 
chemoinformatics methods.  

 

There is much space for innovation in seeking for new applications and for developing 
new methods. 
 

II)  Teaching Chemoinformatics  
 

Chemists have to become more efficient in planning their experiments, have to extract 
more knowledge from their data. Chemoinformatics can help in this endeavor. Furthermore, it 
is important that a certain amount of chemoinformatics is integrated into chemistry curricula in 
order that chemists realize where chemoinformatics could help them, where they best ask 
chemoinformatics experts. In addition, a few universities have to offer training for 
chemoinformatics specialists. The first steps have already been made at a variety of universities 
around the globe. More has to come in order that more experts on chemoinformatics are 
trained that society so urgently needed? 
 

NEED OF CHEMINFORMATICS METHODS IN CHEMISTRY 
 

First of all, chemistry has produced an enormous amount of data and this data 
avalanche is rapidly increasing. More than 45 million chemical compounds are known and this 
number is increasing by several millions each year. Novel techniques such as combinatorial 
chemistry and high-throughput screening generate huge amounts of data. All this data and 
information can only be managed and made accessible by storing them in proper databases. 
That is only possible through chemoinformatics. On the other hand, for many problems the 
necessary information is not available. We know the 3D structure, determined by X - ray 
crystallography for about 300,000 organic compounds [8].Or, as another point, the largest 
database of infrared spectra contains about 200,000 spectra. Although these numbers may 
seem large, they are small in comparison to the number of known compounds: We know from 
less than 1% of all compounds their 3D structure or have their infrared spectra. The question is 
then; can we gain enough knowledge from the known data to make predictions for those cases 
where the required information is not available? 
 

There is another reason why we need informatics methods in chemistry: Many 
problems in chemistry are too complex to be solved by methods based on first principles 
through theoretical calculations. This is true, for the relationships between the structure of a 
compound and its biological activity, or for the influence of reaction conditions on chemical 
reactivity [11]. 
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All these problems in chemistry require novel approaches for managing large amounts 
of chemical structures and data, for knowledge extraction from data, and for modeling complex 
relationships. This is where chemoinformatics methods can come in.  
 

The following gives an overview of chemoinformatics, emphasizing the problems and 
solutions – common to the various more specialized subfields. 
 

1. Representation of Chemical Compounds  
A whole range of methods for the computer representation of chemical compounds and 

structures has been developed: linear codes, connection tables, matrices. Special methods had 
to be devised to uniquely represent a chemical structure, to perceive features such as rings and 
aromaticity, and to treat stereochemistry, 3D structures, or molecular surfaces.  
 

2. Representation of Chemical 
Reactions Chemical reactions are represented by the starting materials and products as 

well as by the reaction conditions. On top of that, one also has to indicate the reaction site, the 
bonds broken and made in a chemical reaction. Furthermore, the stereochemistry of reactions 
has to be handled. 
 

3. Data in Chemistry  
Much of our chemical knowledge has been derived from data. Chemistry offer a rich 

range of data on physical, chemical, and biological properties: binary data for 
http://www.sccj.net/publications/JCCJ/ 55 classification, real data for modeling, and spectral 
data  having a high information density. These data have to be brought into a form amenable to 
easy exchange of information and to data analysis. 
 

4. Data sources and Databases 
The enormous amount of data in chemistry has led quite early on to the development of 

databases to store and disseminate these data in electronic form. Databases have been 
developed for chemical literature, for chemical compounds, for 3D structures, for reactions, for 
spectra, etc. The internet is increasingly used to distribute data and information in chemistry. 
 

5. Structure Search Methods 
In order to retrieve data and information from databases, access has to be provided to 

chemical structure information. Methods have been developed for full structure, for 
substructure, and for similarity searching. 
 
6. Methods for Calculating Physical and Chemical Data 

A variety of physical and chemical data of compounds can directly be calculated by a 
range of methods. Foremost are quantum mechanical calculations of various degrees of 
sophistication. However, simple methods such as additivity schemes can also be used to 
estimate a variety of data with reasonable accuracy. 
 

7. Calculation of Structure Descriptors 
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In most cases, however, physical, chemical, or biological properties cannot be directly 
calculated from the structure of a compound. In this situation, an indirect approach has to be 
taken by, first, representing the structure of the compound by structure descriptors, and, then, 
to establish a relationship between the structure descriptors and the property by analyzing a 
series of pairs of structure descriptors and associated properties by inductive learning methods. 
A variety of structure descriptors has been developed encoding 1D, 2D, or 3D structure 
information or molecular surface properties. 
 

8. Data Analysis Methods  
A variety of methods for learning from data, of inductive learning methods is being used 

in chemistry: statistics, pattern recognition methods, artificial neural networks, genetic 
algorithms. These methods can be classified into unsupervised and supervised learning 
methods and are used for classification or quantitative modeling. 
 

FUNDAMENTALS OF CHEMOINFORMATICS  
 

For the objects in chemical space, chemoinformatics builds its models using two main 
mathematical approaches: graph theory and statistical learning. While these mathematical 
methods can be applied to other fields, the chemical space is a particular concept of 
chemoinformatics describing a way to handle ensembles of chemical structures. 
 
1. Molecular Modeling 

In the late sixties, R. Langridge and coworkers developed methods for visualizing 3D 
Molecular models on the screens of Cathode Ray Tubes. At the same time, G. Marshall started 
visualizing protein structure on graphic screens. The progress in hardware and software 
technology, particularly as concerns graphics screens and graphics cards, has led to highly 
sophisticated systems for the visualization of complex molecular structures in great detail. 
Programs for 3D structure generation, for protein modeling, and for molecular dynamics 
calculations have made molecular modeling a widely used technique. The commonly available 
software’s for molecular modeling are ArgusLab, Chimera and Chemical. 
 

2. Computer-Assisted Structure Elucidation (CASE) 
The elucidation of the structure of a chemical compound, be it a reaction product or a 

compound isolated as a natural product, is one of the fundamental tasks of a chemist. Structure 
elucidation has to consider a wide variety of different types of information mostly from various 
spectroscopic methods, and has to consider many structure alternatives. Thus, it is an 
ambitious and demanding task. It is therefore not surprising that chemists and computer 
scientists had taken up the challenge and had started in the 1960 fs to develop systems for 
computer-assisted structure elucidation (CASE) as a field of exercise for artificial intelligence 
techniques. The DENDRAL project, initiated in 1964 at Stanford University gained widespread 
interest. Other approaches to computer-assisted structure elucidation were initiated in the late 
sixties by Sasaki at Toyohashi University of Technology and by Munk at the University of 
Arizona. 
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3. Computer-Assisted Synthesis Design (CASD) 
The design of a synthesis for an organic compound needs a lot of knowledge about 

chemical reactions and on chemical reactivity. Many decisions have to be made between 
various alternatives as to how to assemble the building blocks of a molecule and which 
reactions to choose. Therefore, computer-assisted synthesis design (CASD) was seen as a highly 
interesting challenge and as a field for applying artificial intelligence techniques. In 1969 Corey 
and Wipke presented their seminal work on the first steps in the development of a synthesis 
design system. Nearly simultaneously several other groups such as Ugi and coworkers, 
Hendrickson and Gelernter reported on their work on CASD systems. Later also at Toyohashi 
work on a CASD system was initiated. 
 

4. Chemical Space Paradigm 
As pointed out by C. Lipinski and A. Hopkins, “chemical space can be viewed as being 

analogous to the cosmological universe in its vastness, with chemical compounds populating 
space instead of stars” *4]. Any attempt even to count the number of chemical compounds 
which potentially could be synthesized leads to combinatorial explosion and yields an 
absolutely unrealistic number estimated as more than 1060 [2] which exceeds the number of 
elemental  particles in the cosmological universe. Clearly that this number is so huge that it is 
impossible not only to synthesize these molecules but even to generate computationally their 
structures. The goal of chemoinformatics is to find a rational way of representing this literally 
infinite chemical space and to navigate in this space. Efficient strategies for navigating chemical 
space are crucially important for the development of new biologically active compounds and 
the design of new drugs for medicine [4]. This is due to the fact that biologically active 
compounds of a certain type are not distributed evenly over the whole chemical space, but 
form very compact regions in it, like galaxies in the cosmological universe [4].This is certainly 
true for any other chemical property. A special term, chemography, analogous to geography, 
has even been suggested for the art of navigating in chemical space [12]. Although the 
expression “Chemical space” is widely used in the chemoinformatics literature, it is not still well 
defined. Generally speaking, the notion of “space” stands for a set of objects with some 
particular properties and some relationships between them (metric).  
 

a) Representation of Chemical Objects in Chemoinformatics 
In chemoinformatics, the molecules are treated as informational objects, identifying 

their structure and properties. Generally, two main types of objects are used: graphs and 
descriptor vectors. In a vertex- and edge-labeled undirected graph, the vertices and edges 
correspond to atoms and chemical bonds, respectively. The vertex labels identify symbols of 
chemical elements, whereas the edge labels characterize the bond type. The label corresponds 
either to the bond order in molecules or to some special bond types in more complex systems. 
For instance, different types of “coordination” bonds can be defined for supramolecular 
systems, whereas “dynamic” bonds corresponding to chemical transformations can be used to 
encode chemical reactions [11]. More complex chemical systems, like polymers or mixtures can 
be described by ensembles of graphs. For several practical purposes, more generalized 
representations of chemical structures are needed. For example, for pharmacophore analysis, 
the graph vertexes can be labeled as pharmacophoric centers (H-donors, H-acceptors, cation, 
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anion, aliphatic, aromatic), while the separation of two centers can be depicted by an edge 
labeled by the value of the 2D or 3D distance [8]. In Markush structures used for patent 
searches, a graph vertex can stand for several types of either individual atoms or whole 
substructures (e.g., substituents). The same is true for substructure queries used for searching 
chemical databases [13]. Consideration of some complex chemical objects reveals, however, 
some limitations of graph theory to code chemical structures and their ensembles. Instead, 
hyper graphs [14] have been suggested as a more adequate mathematical model to encode 
stereo chemical information and multicenter bonds. However, hyper graphs are much more 
difficult objects to operate compared to graphs, and, therefore, their use is still very limited. 
Another popular representation of molecular structure is based on molecular descriptors 
defined by to deschini and Consonni as “…the final result of a logical and mathematical 
procedure which transforms chemical information encoded within a symbolic representation of 
a molecule into a useful number or the result of some standardized experiment.”              *15] 
This molecular representation is extremely popular in chemoinformatics because: (a) various 
descriptors can be generated from one and the same molecular graph, Thus describing 
different facets of the information hidden  in the graph; (b) it is invariant to any renumbering of 
graph vertices; (c) most of the descriptors are easy interpretable; (d) inductive transfer of 
knowledge can be performed via descriptors;[11] and, (e) descriptors define a vector space 
which is mathematically much easier to handle compared to the graph-based space. Descriptor 
vectors can be prepared not only for individual molecules but for more complex systems like 
chemical reactions [11] or multi component mixtures [16]. Nowadays, more than 5000 types of 
descriptors of different types have been reported [15]. They are used for database processing 
(as screens or fingerprints), for building SAR/QSAR/QSPR models, in similarity searching, 
clustering, etc. At the same time, several weak points of molecular descriptors should be 
mentioned: (a) If descriptors are not well selected, in the resulting chemical space two different 
molecules can be superposed on one point; (b) The number of existing descriptors is very large 
and despite numerous variables selection techniques reported in the literature,[ 17] there is 
always a risk of selecting irrelevant and redundant descriptors; (c) A serious drawback of 
molecular descriptors is the loss of reciprocity with the molecular structure. Indeed, the reverse 
reconstruction of molecular graphs from descriptors is a very difficult and, in some cases, 
impossible task known in QSAR as the “inverse” problem. From the practical point of view, it 
concerns generation of molecular structures possessing desired property values. Attempts to 
solve this problem have been reported by Gordeeva et al., Skvortsova et al. and Faulon et al. 
who observed some degeneracy of solutions, when several chemical structures corresponded 
to one set of molecular descriptor values. As pointed out in [18], this prevents a reverse 
engineering of chemical structures from molecular descriptors, but, on the other hand, can be 
useful to safely exchange chemical information in the form of molecular descriptors. 
 

b) Chemical Similarity as a Metric of Chemical Space 
By definition, a metric is a function which defines a distance between the elements of a 

set. For all x, y, z, this function must satisfy the following conditions: (i) d(x, y) _0 (no 
negativity); (ii) d(x, y) =d(y, x) (symmetry) and, (iii) d(x, z) _d(x, y) +d(y, z) (triangle inequality). 
Strictly speaking, the distance d(x, z) is a dissimilarity measure which is zero for identical 
elements and increases with the decrease of similarity between them. Thus, it can be defined 
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as distance= 1 similarity. Some similarity measures are briefly considered below. Molecular 
similarity (or chemical similarity) is one of the most basic concepts in chemoinformatics [19]. It 
is widely used in virtual screening and in silico design of new compounds. Such studies are 
based on the similar property principle which states that similar compounds have similar 
properties [19]. In application to classification problems this means that similar chemical 
compounds tend to belong to the same class (e.g., possessing similar biological activity), 
whereas as applied to regression problems it means that the approximating function should be 
as smooth as possible. It should also be pointed out that molecular similarity always depends 
on the choice of descriptors and methods to compare molecular graphs. Chemical similarity 
measures described in the literature can be calculated from (a) molecular graphs; (b) descriptor 
vectors; (c) molecular fields; they can also be assessed from (d) kernels, and (e) unsupervised or 
(f) supervised modeling studies. This classification is rather fuzzy, and some similarity measures 
belong simultaneously to several classes. 
 

A similarity measure based on the size of the maximum common sub graph (MCS) for a 
pair of graphs is perhaps the most well-known graph-based similarity measure. Due to the 
relative complexity and inefficiency of computational algorithms to search for an MCS [20], this 
approach, however,   is rarely used to perform a similarity search [21] or to cluster chemical 
databases. Another type of graph-based similarity measure is that of graph kernels which assign 
to each pair of graphs a positive real number characterizing similarity. They are used to map a 
graph-based chemical space to a vector (feature) space in which the structure–property model 
is built. This approach has been successfully used in SAR and QSAR [22]. The most popular 
similarity measures are based on fixed sized descriptor vectors. These are various types of 
distances (Euclidean, Manhattan, Mahalanobis, Minkowski) measuring molecular dissimilarity 
or some indices (Tanimoto, Dice, cosine, Tversky, etc.) measuring similarity. These measures are 
widely discussed in the literature, e.g., see the review paper by Willett [23] and references 
therein. 
 

Several approaches have been developed to compare molecular fields. The Carbo index 
is computed by integrating overlaps of electronic densities of two molecules assessed using 
quantum-chemical approaches [24]. The SEAL index [25] is used to assess an alignment of steric 
and electrostatic fields of the molecules. Since any molecular field could be represented as a 
descriptor vector based on the field value on the grid points, a similarity measure can be simply 
calculated as the product of two vectors. Similarity measures for which all matrices of values 
are semi positive definite (the determinant is larger or equal to zero) are called “Mercer 
kernels”, or simply “kernels”. Generally, kernels are used to project the objects (graphs or 
vectors) into a Hilbert “feature space”, in which a similarity measure between these objects is 
equal to dot-product of their projections. A dot product of vectors, which can be viewed as the 
cosine similarity measure for normalized vectors, is the simplest type of kernel. 
 

Unsupervised machine-learning methods of nonlinear neighborhood-preserving 
projections of data can also be used to assess similarity. A typical example is mapping to Self-
Organizing (Kohonen) Maps, SOM [26], where the similarity is measured as a distance between 
different cells. This offers the possibility to use SOMs for property predictions [27] and in virtual 
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screening [28]. If several QSAR models are simultaneously applied to predict a property for a 
series of compounds, the similarity can be assessed in the “models’ space”. Indeed, for each 
compound, one can form a vector based on the prediction results. A dot product of these 
vectors can be considered as a measure of the similarity of two molecules. This approach has 
been used by Tetko in the ASNN (Associative Neural Networks) method [29]. Generally, 
similarity measures could be used both for similarity-based predictions and similarity searching 
[19]. Similarity- based prediction approaches in the initial descriptor space are based on the k 
nearest neighbor’s method (kNN). However, kernel similarity measures implemented in kernel 
based machine learning methods lead generally to more Chemoinformatics as Theoretical 
Chemistry Discipline computationally efficient and predictive models. Both in similarity-based 
prediction methods and in querying large chemical databases, the computational efficiency 
largely depends on whether a given similarity measure defines a metric in chemical space 
[30].For most of similarity measures, the metric axioms (i)–(iii) are valid, and, therefore, they 
can be perceived as distances in chemical space. 
 

c) Navigation in Graph-based Chemical Space 
 

In principle, each ensemble of molecular graphs forms a discrete metric topological 
space. Its topology is defined by a set of all its possible subsets, where the simplest discrete 
metric gives the distance 0 if two chemical objects are equivalent, i.e. corresponding chemical 
graphs are isomorphic to each other and 1 otherwise. This simplest metric is however not 
useful in practical applications, because in such space all distinct objects are equally similar to 
each other. More flexible relationship between graphs can be expressed as a degree of their 
mutual similarity/dissimilarity. In particular, this relationship can be established by mapping an 
ensemble of graphs onto a descriptor vector space followed by an assessment of standard 
similarity measures. 
 

The three main approaches used to describe a set of molecular graphs and to navigate 
in this space are: (a) substructure- based, (b) superstructure-based, and (c) mutation based. In 
the substructure-based approach a special “navigation” graph is usually constructed. It can be 
used for the visualization of chemical databases, exploring relations between compounds and 
discovering unexplored regions in the chemical space. In the navigation graph, the nodes 
correspond to individual molecular graphs and edges correspond to some transition rules. 
Bemis and Mursko have considered transitions between an unlabelled graph (framework) to a 
labeled graph (full chemical structure) [30]. They invented the concept of molecular 
frameworks used to organize the structural data by grouping the atoms of each drug molecule 
into ring, linker, framework, and side chain atoms. Thus, a huge database can be described by a 
limited number of frameworks. In the “scaffold tree” graph approach of Schuffenhauer et al. 
[31], transitions are allowed between a molecular graph and its sub graph. It has been 
demonstrated that this type of navigation graphs allows one to perform an efficient and 
intuitive activity mapping, visualization and navigation of the chemical space defined by a given 
library, which in turn leads to building correlations with bioactivity and further compound 
design [32]. Thus, the hierarchical scaffold classification proposed in [33] helps to chart 
biologically relevant chemical space using data on natural products. The idea of “scaffold tree 
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“is implemented in the open source “Scaffold Hunter” software *34], an interactive tool for 
navigation in chemical space, which facilitates recognition of complex structural relationships 
associated with bioactivity. To represent relationships in analogous series of compounds having 
the same scaffold and different substitution patterns, multilayer-rooted “combinatorial 
analogue graphs” (CAGs) have been proposed by Peltason et al. 
 

These graphical representations hierarchically organize compounds according to 
substitution patterns and are annotated with SARI discontinuity scores [35] in order to account 
for SAR discontinuity at the level of functional groups. The approach makes it possible to 
identify under sampled regions and highlight key substitution patterns which determine the 
SAR of a compound series. An alternative way to visualize SARs in analogous series with a 
common scaffold is offered by the “SAR maps” invented by Agrafiotis et al. In a “SAR map”, 
each series is rendered as a rectangular matrix of cells, each representing a unique combination 
of substituents (i.e., a unique compound). Color-coding the cells by their potency easily 
identifies SAR patterns. Pollock et al. introduced the scaffold topology approach, which 
represents a connected graph with the minimum number of nodes and edges required to fully 
describe its ring structure. An algorithm for systematic generation of scaffold topologies allows 
one to analyze systematically all scaffold topologies for up to eight-ring molecules and four-
valence atoms, thus providing coverage of the lower portion of the chemical space of small 
molecules [36]. 
 

Scaffold topology distributions were analyzed for several of the most popular chemical 
structure databases with huge number of compounds, both real and virtual, and many 
interesting features were found [37+. It is claimed that “scaffold topologies can be the first step 
toward an efficient coarse-grained classification scheme of the molecules found in chemical 
databases”. In the superstructure-based approach, each individual molecular graph is 
considered as a sub graph of a common super graph corresponding to the ensemble of 
individual graphs [38]. Although this approach is limited to relatively small congeneric sets of 
compounds, it has been found very suitable to build QSAR models, as demonstrated in the 
positional analysis by Magee, the DARC/CALPHI system by Mercier et al. , the MTD-PLS 
approach of Kurunczi et al. , and the MFTA approach by Palyulin et al. For each individual 
chemical structure, the occupancies of super graph nodes or local physicochemical descriptors 
of atoms matching these nodes, form a fixed-size descriptor vector used in machine-learning 
methods as an input. An alternative mutation-based approach to travel in graph-based 
chemical space has been suggested by van Deursen et al. They represent a chemical space as a 
graph in which vertices correspond to individual molecules and edges correspond to structural 
mutations: change of atom type; inversion of stereo chemical configuration at chiral centers, 
removal and addition of atom; saturation and unsaturation of bond; bond rearrangement; and 
aromatic ring addition. Traveling in such space from one active molecule to another one, one 
can discover along the trajectory a certain number of novel structures which can be further 
analyzed in the context of lead optimization. A similar approach has been reported by Bishop et 
al. who suggested the use of chemical reactions as structural mutations connecting in the 
chemical space known organic compounds taken from the Beilstein database. The super graph 
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created in such a way enabled the authors to select a set of the “most useful compounds” from 
which the majority of chemical compounds can be synthesized. 
 
d) Navigation in Descriptor-Based Chemical Space 
 

Descriptor-based chemical space is a multidimensional space in which molecules are 
represented as vectors. Two main approaches – dimensionality reduction and clustering -are 
used to facilitate the navigation in this space. 
 

Dimensionality reduction is achieved in classical multivariate data analysis by the 
Principal Component Analysis (PCA) procedure [39+. In PCA, several features (called “principal 
components”) corresponding to the principal inertia axes of the “cloud” of data points in the 
initial descriptor space are used as axes of a new low-dimensional space, onto which the initial 
data points are projected. Such projection occurs with the minimal loss of information and, 
therefore, maximal conservation of the neighborhood relationships between data points. Thus, 
representation of the data points in the resulting low-dimensional space can be considered as a 
“navigation map” of the descriptor space. This idea has been implemented in the ChemGPS 
(chemical global positioning system) technique which positions chemical structures in drug-like 
chemical space (drug space). This makes this approach as well as the related ChemGPS-NP [40] 
tool a well-suited reference system to compare multiple libraries and to keep track of 
previously explored regions of the chemical descriptor space. Although the axes of the PCA 
“navigation map” are orthogonal, corresponding latent variables are statistically independent 
only for a Gaussian distribution of data points. Since this distribution in the descriptor space is 
usually strongly non-Gaussian, this can hamper the chemical interpretability of particular latent 
variables and reduce the usefulness of the whole “navigation map”. To solve this problem, 
Independent Component Analysis (ICA) has been suggested. It has been demonstrated that the 
application of ICA instead of PCA yields chemically more readily interpretable latent variables 
[41]. Hierarchical cluster analysis represents an alternative approach to navigate in the 
descriptor space. The resulting dendrogram gives a clear picture of the neighborhood relations 
between chemical objects, although for a large number of compounds it becomes too 
burdensome. The combined application of dimensionality reduction and clustering methods is 
realized in Kohonen Self-Organizing Maps (SOM). In SOMs, the dimensionality reduction is 
achieved by embedding a net of neurons onto a 2D surface. The SOMs provide more efficient 
solutions than PCA, because the former are more suitable to analyze complex topological 
structures of the descriptor space. The ability of SOMs to build “navigation maps” for visualizing 
chemical space has been demonstrated on GPCR ligands [34], toxic compounds [42], inhibitors 
of P-glycoprotein and different organic reactions [43]. A set of chemical structures can be 
presented as a graph in which the vertices correspond to individual molecules and the edges 
connecting them correspond to certain neighborhood relations. This technique has been used 
to represent relationships between different classes of drug molecules, to elucidate similarity 
relationships within the sets of active compounds [34], and to explore structure-selectivity 
relationships [35]. 
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Hierarchical clustering techniques using some similarity measures also offer the 
possibility of analyzing large chemical data sets. Thus, Agrafiotis et al. have used radial 
clusterograms, different segments of which are color-coded by biological activity or any other 
user-defined property. To characterize structure–activity landscapes in the descriptor- based 
chemical space, SARI and SALI indices have been suggested. The SARI index globally 
characterizes structure-activity landscapes. It consists of two terms: the continuity score which 
measures the potency-weighted structural diversity, and the discontinuity score calculated as 
the average potency difference among similar pairs of molecules. The SALI index [20] is local, 
considering two related molecules, and it is often used to quantify “activity cliffs” *44]. 
 

5. Modeling Background 
 

The two main mathematical approaches used in chemoinformatics are graph theory and 
computational learning theory. Whilst the chemical applications of graphs are described in 
numerous books and review articles, the latter is described mostly in the data mining literature. 
Here, we give some general information about some basic concepts of computational learning 
theory. 
 
a) Computational Learning Theory 

 

In recent years, in statistical modeling there has been a shift from the classical statistical 
paradigm of “model parameterization” to a new paradigm of “predictive flexible modeling”. 
The first paradigm supposes that the functional dependence between the input and output 
data is established from some external knowledge and the goal of the statistical study is to find 
a few independent free parameters by fitting to experimental data. This usually requires a 
certain number of experimental observations per each free parameter. Unfortunately, this 
requirement can be met only in very few cases, e.g., within the classical Hansch-Fujita approach 
based on three descriptors only [45]. The aim of the second paradigm is to build models with 
maximal predictive performance by fitting to experimental data rather flexible families of 
functions involving large numbers of intercorrelated parameters. Such a setup is evidently 
much more appropriate for most chemoinformatics studies. The first attempts to implement 
the second paradigm in the framework of so-called nonparametric statistical analysis failed 
because of the “curse of dimensionality” (which required a huge number of observations 
exponentially growing with the number of free parameters) [46]. Nonetheless, early works on 
predictive modeling were successfully carried out using completely heuristic methodologies of 
artificial neural networks [47] and decision trees [48]. For the first time, a strong theoretical 
background to build statistical models using finite (even small) data sets was developed by 
Vapnik in his Statistical Learning Theory (SLT). This approach, together with that developed 
later as the PAC (Probably Approximately Correct) theory by Valiant and the MDL (Minimum 
Description Length) concept by Rissanen constitute the basis of modern computational learning 
theory. According to SLT, the goal of statistical study is to choose from a given set of functions 
f(x, q) the “best” one f(x, q*) with the minimum value of the risk functional R*f+, which is 
defined as an expected prediction error on new data taken from the same distribution as the 
training set (i.e., the mean prediction performance on all possible test sets). Here x denotes the 
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variables (descriptors in QSAR studies) and q the adjustable parameters. Another important   
characteristic is the empirical risk functional Remp [f], which is defined as an error on the 
training set (fitting error). For regression tasks, one of the most interesting conclusions of SLT is 
that the value of the complexity term does not directly depend. On the number of free 
parameters q in the function class f, the flexibility (capacity, complexity) of which is measured 
by the VC dimension h. The value of h can be considered as an “effective” number of free 
parameters. (Note that h is equal to the number of free parameters in classical multiple linear 
regression without descriptor selection). 
 

According to SLT, h is controlled by the trade-off parameter used to simultaneously 
minimize both terms in Equation 2. This offers an opportunity to build models with any (even 
very huge) number of variables using kernel approaches, which approximate nonlinear 
functional dependencies of any form by projecting descriptors onto a feature space of any 
(even infinite) dimensionality and build linear models in this feature space. 
 

Nowadays, computation learning theory represents a quickly developing area. Thus 
recently, a Bayesian learning approach to predictive flexible modeling has been described [49] 
Instead of one single model (as in STL), it considers the whole statistical distributions of models 
weighted by their ability to fit data, thus allowing one to make probabilistic predictions by 
averaging these distributions. This approach has come to be rather popular in 
chemoinformatics: its implementations in Bayesian Neural Networks, [50] Gaussian Processes 
[51] and Bayesian Networks [52] have been recently published. 
 

b) Different Facets of Statistical Modeling 
 

It should be pointed out that the range of application of different statistical (machine 
learning) methods in chemoinformatics is currently very wide. Most of the existing machine 
learning approaches can provisionally be divided into two large families: supervised and 
unsupervised machine learning. (Some other approaches – semi supervised, active and multi-
instant learning – are very rarely used in chemistry so far). 
 

The goal of the supervised learning in chemistry is to predict physicochemical properties 
and biological activities of chemical compounds. The quantitative prediction of real-valued 
properties is performed by regression models, whereas qualitative predictions (“active” or 
“inactive”?) are assessed in classification models. The most popular regression methods 
currently used in chemoinformatics applications are multiple linear regression (MLR), partial 
least squares (PLS), neural networks, support vector regression(SVR), and kNN, whereas the 
na_ve Bayes, support vector machines (SVM), neural networks and classification trees 
(especially the Random Forest method[53] are widely used for classification. There are also 
ranking models [54] in which ranking order instead of property values are predicted, and 
models with structured output [47] in which predicted values belong to classes of any 
complexity. Models of the latter two types can be built using some special modifications of 
SVM. Unsupervised learning describes the data and reveals their hidden patterns. The most 
important tasks treated by unsupervised modeling approaches are: (a) cluster analysis (data 
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reduction); (b) dimensionality reduction; (c) novelty (outlier) detection. All these tasks can be 
perceived as particular cases of data density estimation. Many standard algorithms for both 
nonhierarchical (e.g., k-means) and hierarchical clustering algorithms are used. The most 
popular algorithms for dimensionality reduction are PCA (Principal Component Analysis) and 
ICA (Independent Component Analysis). Tasks (a) and (b) are solved simultaneously in the 
Kohonen Self-Organizing Maps (SOMs) [47], which are intensively used for the purposes of 
visualization and analysis of the chemical space. The ability of several machine learning 
methods, such as one-class SVM, to tackle the problem of novelty detection is currently used to 
define the applicability domains of QSAR/QSPR models [55] as well as in virtual screening 
experiments [47]. With respect to data description, two types of models – primal and dual – can 
be identified. Primal models are based on the direct use of descriptors, whereas dual models 
are based on measures describing similarity relationships between chemical structures. Kernels 
represent the most useful types of such measures; they can be computed both from molecular 
descriptors and by direct comparison of chemical structures. Both primal and dual approaches 
can be used within supervised and unsupervised modeling tasks. Finally, statistical models can 
be built for a net of mutually related models, in which their predictive performance can be 
leveraged due to Inductive Learning Transfer phenomenon [11], in the framework of the Multi-
Task Learning and Feature Net approaches. 
 

CHEMOINFORMATICS TOOL IN DRUG DISCOVERY 
 

The discovery of new chemical entities exhibits a paradigm shift by application of novel 
techniques like combinatorial chemistry and high throughput screening generating huge 
amount of data. This data and information can only be managed and made accessible by storing 
them in databases. Such problems in chemistry require use of chemoinformatics methods. It 
covers the application of computer‐assisted methods to chemical problems like information 
storage and retrieval, the prediction of physical, chemical or biological properties of 
compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning 
and drug design. Chemoinformatics methods have successfully been applied in all fields of 
chemistry. The future will bring a rapid expansion of the use of Chemoinformatics to our further 
understanding of chemistry and to process the flood of chemical information [46]. 
 

Chemoinformatics should assist the chemist to solve some of following fundamental 
problems: 
 
1. To design molecules with desired properties ‐ the major task of a Chemist is to make 

compounds with desired properties, establish structure‐activity or structure‐property 
relationships (SAR or SPR) or even of finding such relationships in a quantitative 
manner (QSAR or QSPR).  

2.  To design reaction and syntheses to make these compounds ‐ the designing of reaction 
includes the sequence of reactions and starting materials to be used to synthesize the 
desired compound. 
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3. To analyze and elucidate the structures obtained in reactions ‐ there is a need to 
establish the structure of the reaction product by using various tools of structure 
elucidation. 

4. To transform data into knowledge through information processing for the intended 
purpose of making better decisions faster. 
 

 
 

Source: Cheminformatics in Modern Drug Discovery Process, Peter Ertl 
Figure 1: Steps towards drug discovery using chemoinformatics as a major tool. 

 
1. Data: 

Large and well-annotated datasets are essential for developing statistical machine 
learning methods in chemoinformatics, whether supervised or unsupervised, including 
predictive classification, regression, and clustering of small molecules and their properties. 
 

Several parallel support have emerged recently to start to address the data bottleneck, 
including PubChem (http://pubchem.ncbi.nlm.nih.gov), the Harvard Chembank, UCSF's ZINC, 
and the UCI ChemDB [56]. The UCI ChemDB is a public database containing over 4M 
compounds as well as a repository of annotated datasets that can be used to develop statistical 
machine learning methods. Together, these datasets already pose important challenges for 
both supervised and unsupervised machine learning methods, from clustering to kernel 
methods. 

 
2. Drug Discovery: 

There are seven steps in the drug discovery process: disease selection, target 
hypothesis, lead compound identification (screening), lead optimization, pre-clinical trial, and 
clinical trial and pharmacogenomic optimization. Traditionally, these steps are carried out 
sequentially. The average cost of creating a NCE in a major pharmaceutical company was 
estimated at around $7,500/compound. To reduce costs, pharmaceutical companies have had 
to find new technologies to replace the old “hand-crafted” synthesis and testing NCE 
approaches. Since 1980, with the advent of high throughput screening (HTS), automated 
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techniques have made possible robotized screening. Through this process, hundreds of 
thousands of individual compounds can be screened per drug target per year. In response to 
the increased demand for new compounds by biologists, chemists started using combinatorial 
chemical technologies to produce more new compounds in shorter periods. Combinatorial 
chemistry (CC) systematically and repetitively yields a large array of compounds from sets of 
different types of reagents, called “building blocks”. By 2000, many solution- and solid-phase CC 
strategies were well-developed [57]. 

 
3. Drug and Lead properties: 

Technologies have been developed to recognize drug-like compounds from a diverse 
compound library [58]. These drug-like measuring and filtering technologies have partly solved 
the screening problems. However, they have not been good enough to completely solve these 
problems. It has been observed that many drug-like compounds, which should be potential 
candidates; do not come up as hits when they are screened against biological targets. It is 
believed that further refinement of the filtering technologies should be made in order to 
recognize lead-like compounds [27] instead of drug-like compounds. Intrinsically, lead-likeness 
and drug likeness are the descriptors of potency, selectivity, absorption, distribution, 
metabolism, toxicity, and scalability 

 
4. Drug Discovery Process and Early ADMET Prediction: 

One now finds too many hits when searching for lead candidates, thus lead optimization 
is stymied. To get more target structural information, high throughput protein crystallization 
has been explored. Lead optimization remains the most serious bottleneck. In addition, we 
know that, about forty percent of all development candidates fail due to absorption, 
distribution, metabolism, excretion and toxicity (“ADMET”) problems *30+. HTS for 
pharmaceutical discovery was used as a filter in order to identify the few potentially promising 
hits in a corporation’s synthetic archive. Therefore, HTS data analyses were focused on hits, and 
the bulk of the non-hit data was ignored [30]. Cheminformatics methods must be applied while 
generating data using high throughput techniques in order to assure that good ADMET 
properties are achieved while making and screening compounds, this approach is called a multi-
parametric optimization strategy [59]. 

 
5. Chemical structure database: 

Since structure and substructure searches are typical NP problems, they were 
computationally costly [31]. In order to make structure and sub-structure searching feasible on 
slow computer systems, many methods were attempted in order to find concise structural 
representations, such as, linear notations. These convert structural graphs to strings that can 
easily be searched by a computer. The data screening strategies filtered out the compounds 
were not the main structural features (search keys) in a given query. Then, an atom-by-atom 
search algorithm was applied (this was usually time consuming) to a smaller number of 
compounds. Subsequently, screening approaches have been used in most of chemical database 
management systems. 

 
6. Linear notations: 
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Structure linear notations convert chemical structure connection tables to a string, a 
sequence of letters, using a set of rules. The earliest structure linear notation was the 
Wiswesser Line Notation (WLN). ISI® adopted WLN to be used in some of their products in 1968 
and, it is still use today. It was also adopted in the mid 1960s for internal use by many 
pharmaceutical companies. At that time (mid 60s to 80s), it was considered the best tool to 
represent, retrieve and print chemical structures. In WLN, letters represents structural 
fragments and a complete structure is represented as a string. This system efficiently 
compressed structural data and, was very useful to storing and searching chemical structures in 
low performance computer systems. However, the WLN is difficult for nonexperts to 
understand. Later, David Weininger suggested a new linear notation designated as SMILESTM 
[32]. SMILESTM is widely accepted and used in many chemical database systems. 

 
7. Visualizing structures from graphed data points: 

Chemical structure graphs are chemists’ natural language. Since a compound library is 
mapped to points on a two dimensional graph, a reasonable requirement is for one to have an 
easy way to see the structure by pointing to the corresponding dot. This problem has been well 
resolved by Spotfire® software. The criteria used for selecting descriptors should be: (1) the 
selected descriptors should be bioactivity related (requiring correlation analysis), (2) the 
selected descriptors should be informative (should have diversified value distributions), (3) the 
selected descriptors should be independent of each other (if two descriptors are correlated to 
each other, related property will be unfairly biased), (4) the selected descriptors should be 
simple to extract, easy to explain to a chemist, invariant to irrelevant transformations, 
insensitive to noise, and efficient to discriminate patterns in different categories (specificity). 
After comparing performance and predictability in high throughput data mining, researchers 
from multiple groups have consistently concluded that 2D descriptors perform significantly 
better than 3D descriptors [38]. 

 
8. Clustering and Partitioning: 

The term cluster analysis (CA) was first used by Tryon, in 1939. Actually CA encompasses 
a number of different classification algorithms. A general question in many areas of an inquiry is 
how to organize the observed data into meaningful structures, that is, how to develop 
taxonomies [60]. Hierarchical clustering rearranges objects in a tree-structure. Javis-Patrick 
(also known as nearest neighbor cluster algorithm) is commonly used to cluster chemical 
structures [61]. One of the most popular decision tree techniques is recursive partitioning (RP). 
It has been reported that RP algorithms can partition on data sets with over 100,000 
compounds and 2,000,000 descriptors, in less than an hour. RP algorithms can also be used to 
build multivariable regression models. 

 
9. Virtual library generation and Virtual screening: 

As equipment is being automated and miniaturized, HTS capacity keeps expanding. But, 
increased HTS efforts have not significantly increased drug discovery successes. Considering 
total lead-like molecular space, the total percentage of compounds that current technologies 
have made and screened, is still small. This has made way for the birth of in silico or virtual 
screening (VS) technology [39]. In conjunction with high-throughput screening technology, 



          ISSN: 0975-8585 
 

July-September      2013           RJPBCS              Volume 4 Issue 3    Page No. 495 

virtual screening has become a main tool for identifying leads [62]. Virtual screening is actually 
one of the computational tools used to filter out unwanted compounds from physical libraries 
or in silico libraries. In order to reduce drug discovery costs, one needs to remove undesired 
compounds as early as possible. Filters have been built based upon oral bioavailability, aqueous 
solubility, and metabolic clearance and, chemically reactivity or toxic chemical groups [40]. A 
virtual screening method for identification of “frequent hitters” in compound libraries has been 
reported. If the target structure is known, one of the structure-based virtual screening methods 
that can be used is high throughput docking. If the target structure is unknown, but the ligands 
from the literature or, competitors are known, then, similarity approaches can be applied. If 
neither target structure nor ligand structure is known, then SAR patterns can be derived from 
experimental screening data by statistical approaches [63] Also, virtual screening is a great tool 
for the design of a combinatorial library with a given target. For example, Hopfinger and co 
works have constructed a combinatorial library of glucose inhibitors of glycogen phosphorylase 
b using virtual screening technology and 4D-QSAR analyses [64]. Using the 4D-QSAR model 
developed for a training set of 47 glucose analogue inhibitors of glycogen phosphorylase, the 
investigators have developed a virtual approach to screen a focused combinatorial virtual 
library of 225 inhibitors. Analysis of the binding predictions across the virtual library reveals 
patterns of structure activity information. The patterns are then used to design new focused 
libraries. A recent review has indicated that HTS and VS are moving toward integration [65]. 

 
10. In silico ADMET: 

Under multi-parametric optimization drug discovery strategies, there is no excuse for 
failing to know the relative solubility and permeability rankings of collections of chemical 
compounds for lead identification [34]. The method used (VolSurf) transforms 3D fields into 
descriptors and correlates them to the experimental permeation by a discriminate partial least 
squares procedure [35]. Human serum albumin (HSA) protein is the major transporter of non-
esterified fatty acids, as well as of different drugs and metabolites, to different tissues. HSA 
allows solubilization of hydrophobic compounds, contributes to a more homogeneous 
distribution of drugs in the body, and increases their biological lifetime. The binding strength of 
any drug to serum albumin is the main factor for availability of that drug to diffuse from the 
circulatory system to target tissues. All these factors cause the pharmacokinetics of almost any 
drug to be influenced and controlled by its binding to serum albumin. Binding to HSA turns out 
to be determined by a combination of hydrophobic forces together with some modulating 
shape factors [20].  This agrees with X-ray structures of HAS alone or, bound to ligands, where 
the binding pockets of both sites and II are composed mainly of hydrophobic residues [44]. HTS 
has been used for metabolism and pharmacokinetics [45]. In vitro approaches determine 
metabolic stability, screening for inhibitors of specific cytochrome P450 isozymes and, 
identifying the most important metabolites, QSAR and pharmacophore models, protein models, 
and expert systems. QSAR and pharmacophore models predict substrates and inhibitors of a 
specific cytochrome P450 isozyme [47]. Protein models rationalize metabolite formations and 
identify possible substrates, potential metabolites or, inhibitors by means of docking 
algorithms. 

Stereoelectronic factors involved in metabolic transformations can be taken into 
account using quantum chemical calculations. Expert systems are predictive databases that 
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attempt to identify potential metabolites of a compound as determined by knowledge based 
rules defining the most likely products. The mechanistic approach involves human experts who 
make a considered assessment of the mechanism of interaction with a biological system, taking 
the molecular properties, biological data, and chemical structures into account. The correlative 
approach uses an unbiased assessment of the data to generate relationships and predict 
toxicity. It is capable of discovering potentially new SARs [51]. 
 

CHEMOINFORMATICS –FUTURE TRENDS 

 
1. Global databases, integration of multiple data sources, public (Wikipedia-like) curation 
2. Use of Computer Assisted Structure Elucidation (CASE) process and Computer Assisted 

Synthesis Design (CASD) would be integrated into the daily work process of bench 
chemists. 

3. Chemoinformatics methods will be extended to theoretical chemistry, stimulation of 
reaction; study of proteins will be the future areas of thrust for chemoinformatics. 

4. Use of large chemo genomics databases (WOMBAT, GVK …) 
5. Text and image mining, automatic extraction of useful information from publications 

and patents 
6. Integration with bioinformatics, with focus on ligand protein interactions and 

pharmacophores 
7. Disappearing border between cheminformatics and computational chemistry 
8. In technology area –modularization, web services 
9. Open source collaborative software development 
10. Using all the advanced chemoinformatics system, it enhances the drug discovery 

rapidly and with low cost and helps to eminent scientists to synthesize the chemical 
molecules which lead to helps the society. 

 

CONCLUSION 

 
Chemoinformatics can hence be described as the application of informatics methods to 

solve chemical problems. It has developed over the last 40 years to a mature discipline that has 
applications in many areas of chemistry. It is an important scientific discipline that stands on 
the interface between chemistry, biology and Information Technology. Chemoinformatics spans 
a very broad range of problems and approaches which are often inter-related and sometimes 
difficult to categorize. As high throughput technologies and combinatorial chemistry continue 
to advance, informatics techniques will become indispensable in managing and analyzing the 
exploding volumes of data. By organizing, the data, Chemoinformatics will further introduce 
advancements in chemistry and open new possibilities in the field of drug discovery. There are 
still many problems that await a solution and therefore many new developments in 
chemoinformatics are foreseen. We believe that this review will be the defining theme and 
might help to provide much new advancement in the field of chemoinformatics in coming 
years.  Hopefully, the availability of information related to chemoinformatics will catalyze 
further advancements and would open new advancements in this field.  
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