

Research Journal of Pharmaceutical, Biological and Chemical Sciences

One-Step Multicomponent Synthesis of2-Oxo-Quinolin-3-yl-Dihydropyrimidinoneand 2-oxo-1,2-Dihydroquinolin-3-yltetrahydroquinazolinedioneDerivatives

Boudjemaa Boumoud^{1*}, Imene Mennana¹, Taoues Boumoud¹, Paul Mosset², and Abdelmadjid Debache¹

¹Laboratoire de synthèse de molécules d'intérêts biologiques Département de Chimie, Faculté des Sciences, Université Mentouri de Constantine 25000 Constantine, Algérie

²Université de Rennes 1, Institute des Sciences Chimiques de Rennes, CNRS UMR 6226, Avenue du Général Leclerc, 35042 Rennes Cedex, France.

ABSTRACT

Many components bearing different pharmacophoric groups have been used in Biginelli condensation allowing the identification of marketed drugs active against different diseases. In this context, we describe herein, an efficient synthesis of some heterocyclic systems bearing two biologically active moieties 2-oxo-1,2dihydroquinoline and 3,4-dihydropyrimidine-2(1*H*)-ones or octahydroquinazolinoneby the cyclocondensation reaction of the corresponding biologically active 2-chloro-1,2-dihydroquinoline-3-carbaldehydes,1,3-dicarbonyl compounds and ureain the presence of NaNO₃ as a high yielding catalyst.

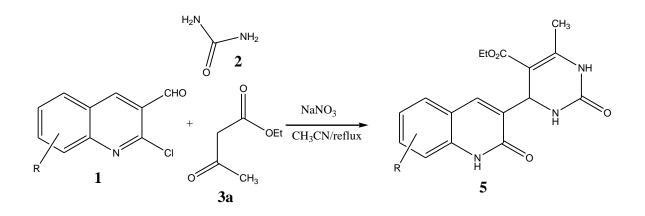
Key words:Biginelli condensation, 2-oxo-1,2-dihydroquinoline, 3,4-dihydropyrimidine-2(1*H*)-ones, octahydroquinazolinone, DHPMs, NaNO₃

*Corresponding author

January – March 2013

RJPBCS

Volume 4 Issue 1


Page No. 539

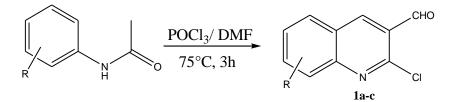
INTRODUCTION

In recent years, dihydropyrimidinones (DHPMs) are gaining increasingly importance due to their broad spectrum of biological activities such as antiviral, antitumor, anticancer, antibacterial, antifungal as well as anti-inflammatory actions [1-5] and antioxidative properties [6]. More recently, appropriately functionalized DHPMs have emerged as orally active antihypertensive agents [7-9], as calcium channel modulators, α1a-adrenergic antagonists, neuropeptide Y (NPY) antagonists, and compounds that target the mammalian mitotic machinery [10-12]. On the other hand, various substituted quinolone compounds are therapeutically potential in the area of human and animal health such as antibacterial [13-15], antimicrobia1[16], and antituberculosis activities [17-19]; as a result, several quinolones like Ciprofloxacin, Pefloxacin, Levofloxacin and Spafloxacin are released in the clinical world. Octahydroquinazolinone derivatives have, also, attracted considerable attention as they exhibit potent antibacterial [20, 21], and calcium antagonist activities [22].

Literature investigation reveals that (un)sub. 2-chloro-1,2-dihydroquinoline-3carbaldehydes were used in the synthesis of some DHPMs [23, 24], but, not a single reference referred to their use in the preparation of 2-oxo-quinolin-3-yl-dihydropyrimidinoneand 2-oxo-dihydroquinolin-3-yl tetrahydroquinazolinone derivatives in just one step-one pot Biginelli reaction. Based on these observations, we report in the present work the synthesis of the above mentioned compounds using some of (un)sub.2-chloro-1,2-dihydroquinoline-3carbaldehyde derivatives **1**, urea and 1,3-dicarbonyl compounds in the presence of a catalytic amount of NaNO₃ (Scheme 1).

Scheme 1: General synthetic scheme of the obtained products 5

MATERIALS AND METHODS


Experimental

General remarks

Melting points were measured using a fine control Electro thermal capillary apparatus and are uncorrected. ¹H NMR spectra were recorded on a BRUKER spectrometer (400 or 250 MHz) using CDCl₃ or DMSO-d₆.Chemical shifts are reported in parts per million (ppm) relative to TMS (0.00), as internal standard, and coupling constants (J) are reported in hertz (Hz). ¹³C NMR spectra were recorded on a BRUKER spectrometer (200 or 62.9 MHz). High resolution mass analyses (HR-MS) were performed bv CRNS spectral (centre de recherché, écolenationale supérieure de chimie de Rennes, France) on a waters Q-TOF2 spectrometer and presented as m/z (relative intensity, assignment). IR spectra were obtained as potassium bromide (KBr) pellets with a Shimadzu FT IR-8201 PC spectrometer.

General Procedure for the Synthesis of 2-Chloro-3-quinolinecarbaldehydes (1a–c)

We initiated the present syntheses by the preparation of 2-Chloro-3quinolinecarbaldehydes (**1a–c**) from the corresponding acetanilide via Meth-Cohn method [25] (Scheme 2).

Scheme 2: Synthesis of 2-Chloro-3-quinolinecarbaldehydes (1a-c)

General procedure for the synthesis of 4-[20x0-1,2-dihydroquinlin-3-yl)]-3,4-dihydropyrimidin-2(1*H*)-onederivatives (5a-c)

A mixture of an appropriate 2-chloro-1,2-dihydroquinoline-3-carbaldehyde (2.5 mmol), urea (3.4 mmol) and ethyl acetoacetate (2.5mmol), in the presence of the catalyst NaNO₃ (10 mol%) in CH₃CN (5 ml), was refluxed for 3h as indicated by TLC. The reaction mixture was poured into ice water and the obtained residue was filtered and purified by recrystallization in EtOH. The aqueous layer was evaporated, under reduced pressure, and the catalyst was recovered.

5-(Ethoxycarbonyl)-6-methyl-4-(2-oxo-1,2-dihydroquinolin-3-yl)-3,4-dihydropyrimidin-2(1H)-one(5a)

Brown solid, M.P > 300°C.¹H NMR (400 MHz, CDCl₃,δ ppm, *J* Hz): δ = 11.89 (s, 1H, NH of quinolone), 9.23 (d, 1H, *J* = 1.4 Hz, NH of DHPM), 7.70 (dd, 1H, *J* = 7.9, 1.3 Hz, H-C5), 7.57 (s, 1H, C4), 7.48 (ddd, 1H, *J* = 8.3, 7.1, 1.3 Hz, H-C7), 7.31 (broad d (dd after resolution improving with Traficante), 1H, *J* = 8.3, 0.7 Hz, H-C8), 7.16 (ddd, 1H, *J* = 7.9, 7.1, 1.1 Hz, H-C6), 7.11 (broad t, 1H, *J* = 2.3 Hz, NH of DHPM), 5.37 (d, 1H, *J* = 3.1 Hz, C<u>H</u>-N), 3.97 (q, 2H, *J* = 7.1 Hz, OC<u>H</u>₂CH₃), 2.34 (s, 3H, C<u>H</u>₃-C=), 1.05 (t, 3H, *J* = 7.1 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): δ = 165.09 (Cquat, <u>C</u>O of ester), 161.10 (Cquat, C2 e.g. <u>C</u>O of quinolone), 152.00 (Cquat, NH<u>C</u>ONH), 150.03 (Cquat, C8a), 138.02 (Cquat, C=<u>C</u>-Me), 134.69 (<u>C</u>H, C4), 133.43 (Cquat, C3), 130.05 (<u>C</u>H, C7), 127.99 (<u>C</u>H, C5), 121.80 (<u>C</u>H, C6), 118.79 (Cquat, C4a), 114.71 (<u>C</u>H, C8), 95.93 (Cquat, <u>C</u>=C-Me), 58.98 (O<u>C</u>H₂CH₃), 49.39 (<u>C</u>H-N), 17.80 (<u>C</u>H₃-C=), 14.02 (OCH₂<u>C</u>H₃).

4-(7-chloro-2-oxo-1,2-dihydroquinolin-3-yl)-5-ethoxycarbonyl-6-methyl-3,4-dihydropyrimidin-2(1*H*)-one (5b)

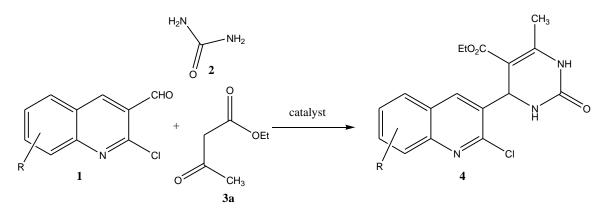
Orange solid, M.P > $300^{\circ}C.^{1}H$ NMR (250 MHz, DMSO-d₆, δ ppm, *J* Hz): δ = 12.20 (s, 1H, NH of quinolone), 9.25 (d, 1H, *J* = 1.4 Hz, NH of DHPM), 7.78 (dd, 1H, *J* = 7.9, 1.3 Hz, H-C5), 7.62 (s, 1H, C4), 7.33 (s, H-C8), 7.19 (m, 1H, H-C6), 7.11 (broad t, 1H, *J* = 2.3 Hz, NH of DHPM), 5.35 (d, 1H, *J* = 3.1 Hz, C<u>H</u>-N), 3.94 (q, 2H, *J* = 6.41 Hz, OCH₂CH₃), 2.32 (s, 3H, CH₃-C=), 1.04 (t, 3H, *J* = 7.1 Hz, OCH₂CH₃). ¹³C RMN (62.9 MHz, DMSO-d₆, δ ppm): δ = 165.58 (C_{quat}, <u>C</u>O of ester), 161.64 (C_{quat}, C₂ e.g. <u>C</u>O of quinolone), 152.60 (C_{quat}, NH<u>C</u>ONH), 150.67 (C_{quat}, C_{8a}), 139.45 (C_{quat}, C=<u>C</u>-Me), 137.50 (<u>C</u>Cl, C7), 134.93 (<u>C</u>H, C4), 133.43 (C_{quat}, C₃), 130.05 (<u>C</u>H, C5), 128.02 (<u>C</u>H, C₆), 121.52 (<u>C</u>H, C₈), 118.22 (C_{quat}, C_{4a}), 95.93 (C_{quat}, <u>C</u>=C-Me), 59.54 (O<u>C</u>H₂CH₃), 49.93 (<u>C</u>H-N), 18.50 (<u>C</u>H₃-C=), 14.34 (OCH₂CH₃).

5-Ethoxycarbonyl-4-(6-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-6-methyl-3,4-dihydropyrimidin-2(1*H*)-one (5c)

Orange solid, M.P > 300°C.¹H NMR (250 MHz, DMSO-d₆, δ ppm, *J* Hz): δ = 11.84 (s, 1H, NH of quinolone), 9.23 (d, 1H, *J* = 1.4 Hz, NH of DHPM), 7.50 (s, 1H, H-C₅), 7.50 (s, 1H, C₄), 7.30 (d 1H, *J* = 7.89 Hz, H-C₈), 7.20 (d, 1H, *J* = 8.54 Hz, H-C₇), 7.11 (broad t, 1H, *J* = 2.3 Hz, NH of DHPM), 5.37 (d, 1H, *J* = 3.1 Hz, C<u>H</u>-N), 3.98 (q, 2H, *J* = 11.0 Hz, OC<u>H</u>₂CH₃), 2.33 (s, 3H, C<u>H</u>₃-C=), 2.20 (s, 3H C<u>H</u>₃-C=), 1.05 (t, 3H, *J* = 11.0 Hz, OCH₂C<u>H</u>₃).¹³C NMR (62.9 MHz, DMSO-d₆, δ ppm): δ = 165.64 (C_{quat}, <u>C</u>O of ester), 161.64 (C_{quat}, C₂ e.g. <u>C</u>O of quinolone), 152.60 (C_{quat}, NH<u>C</u>ONH), 150.57 (C_{quat}, <u>C</u>8_a), 135.00 (C_{quat}, C=<u>C</u>-Me), 134.80 (<u>C</u>H, C₄), 132.43 (C_{quat}, C₆), 128.00 (C_{quat}, C₃), 118.00 (C_{quat}, C₄), 115.00 (<u>C</u>H, C₇), 112.00 (<u>C</u>H, C₅), 111.00(<u>C</u>H, C₈), 96.00

(C_{quat}, <u>C</u>=C-Me), 59.50 (O<u>C</u>H₂CH₃), 48.59 (<u>C</u>H-N), 22.10 (<u>C</u>H₃-Aro), 18.20 (<u>C</u>H₃-C=), 14.50 (OCH₂<u>C</u>H₃).

General procedure for the synthesis of 7,7-dimethyl-4-(2-oxo-1,2-dihydroquinolin-3-yl)-3,4,7,8 tetrahydroquinazoline-2, 5(1*H*,6*H*)-dione (6a–c)


2-chloro-1,2-dihydroquinoline- 3-carbaldehyde (2.5 mmol), dimedone (2.5 mmol), urea (2.5 mmol), and NaNO₃ (20 mol%) in methanol and water (3 ml, 1:1)) were charged in a 100 ml round-bottomed flask with magnetic stirrer and condenser. The reaction mixture was slowly heated and refluxed for 8 h. On completion of the reaction, as indicated by TLC, the reaction mixture was cooled to room temperature and the separated solid was filtered and washed with a mixture of chloroform and methanol (1:1) to obtain the pure compounds 6a-c.

7,7-Dimethyl-4-(2-oxo-1,2-dihydroquinolin-3-yl)-3,4,7,8-tetrahydroquinazoline 2,5(1*H*,6*H*)dione (6a)

Yellowish compound, M.P.280-283 °C.¹H NMR (250 MHz, DMSO-d₆, δ ppm, *J* Hz): δ = 1.05 (s, 3H, CH₃), 1.07 (s, 3H, CH₃), 2.08–2.44 (m, 4H, 2CH₂), 5.31 (s, 1H, quinazolinone H4), 7.00 (s, 1H, NH), 7.04–7.70 (m, 5H, Ar–H), 9.48 (s, 1H, NH), 11.84 (s, 1H, NH). ¹³C NMR (62.9 MHz, DMSO-d₆, δ ppm): δ = 27.80 (CH₃), 29.03 (CH₃), 32.74 (C(CH₃)₂), 39.09 (CH₂), 48.65 (CH₂–CO), 50.12 (quinazolinone C4), 105.62, 115.57, 119.03, 128.10, 131.85, 132.70, 132.92, 136.37, 136.74, 150.55 (10C, Ar–C), 156.57 (C_{quat}, NH<u>C</u>ONH), 161.64 (C=O of quinolone), 193.64 (C=O of quinazolinone).

RESULTS AND DISCUSSION

The presence of two or more different heterocyclic moieties in a single molecule often enhances the biological activities remarkably [26]. Therefore, we investigated the model multicomponent reaction of 2-chloro-3-formylquinoline **1a** (R = H) with urea **2** and ethyl acetoacetate **3a**with the expectation of synthesizing compounds of type **4** (Scheme-3).

Scheme 3: General synthetic scheme of Biginelli compounds

January - March

2013 RJPBCS

ISSN: 0975-8585

To determine the optimum conditions of the reaction, we attempted a plethora of catalysts and media. After some experimentation, we set up that the appropriate promoter system was the use of CH_3CN as solvent and $NaNO_3$ as catalyst (Table 1).

catalyst	Catalyst (mol%)	Time (h)	Yield(%) ^a
Pb(NO ₃) ₂	10	3	70
Ni(NO ₃) ₂ .6H ₂ O	10	5	60
NaNO ₃	10	3	75
FeCl ₃ .6H ₂ O	10	5	≤20
NiCp ₂ Cl ₂	10	5	35

Table 1Effect of different catalysts on the yield of 4a

When we analyzed the spectral data of the product **4a** (Scheme 3, R= H), IR spectrum showed absorption at 1660 cm⁻¹ for the 2-quinolinone group [24b, 27]. ¹HNMR spectrum showed the characteristic up field absorption of quinolin-CONH (s, 11.89) and quinolinone carbonyl resonance at δ 161.10 in ¹³C-NMR spectrum.

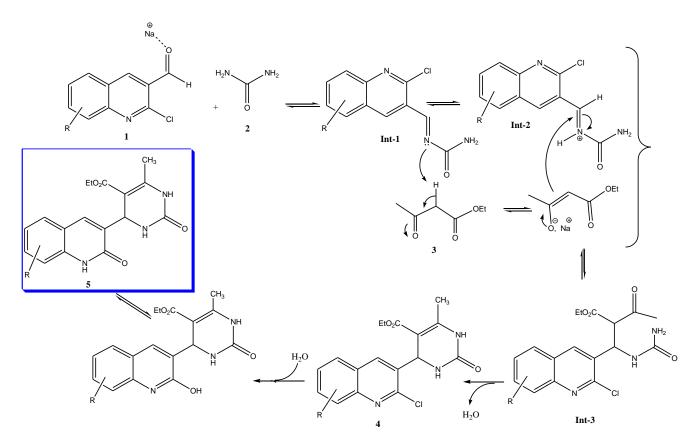
These data are in favor of 2-oxoquinoline product **5a** (Scheme 1, R= H) formation rather than 2-chloroquinoline product **4a** (Scheme 3, R = H). The structure of **5a** was further confirmed by the existence of the molecular ion peak at m/z 350.1115 [M + Na]⁺in mass spectral studies corresponding to molecular formula $C_{17}H_{17}N_3O_4Na$. Moreover, the bass resolution spectrum showed no chloride isotopic corresponding to molecular formula $C_{17}H_{17}N_3O_4Na$.

These unexpected results prompted us to use different substituted 2-chloro-3formylquinoline, under the above mentioned reaction conditions, in order to synthesize some products containing both quinolone and DHPM moieties in one molecular framework in one step reaction (Scheme 1). Delightedly, all the reactions gave exclusively the desired products**5**. The results are summarized in Table 2.

Product ^a	R	Yield ^b (%)
5a	Н	75
5b	7-Cl	70
5c	6-CH₃	75

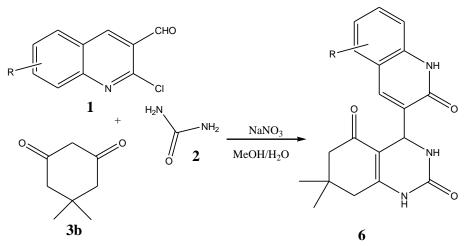
Reaction conditions: Aldehyde (2.5 mmol), urea (3.4 mmol), ethyl acetoacetate (2.5 mmol), NaNO₃ (10 mol %), CH₃CN ((5.0 ml) at reflux temperature.

^a All the products were characterized by IR, ¹H NMR, ¹³C NMR and mass spectroscopy.


^b Isolated yields.

The electrophilic character of the carbonyl carbon of the aldehydes **1** might be increased by forming the intermolecular bonding between Na⁺cation, which facilitates the formation of imines species (**Int-1**) that lead to the N-acyliminium intermediates (**Int-2**) by splitting the acid proton of 1,3-dicarbonyl compounds**3**. Further, the enolic ethyl acetoacetate, stabilized by the interaction with Na⁺cation, reacts as nucleophile on N-acyliminium species leading to the intermediates (**Int-3**), which yieldBiginelli compounds **4** after subsequent cyclodehydration. The

ISSN: 0975-8585


presence of water in the reaction mixture reacts as nucleophile and substitutes the chlorine to give the corresponding quinolones **5**. Hence, a tandem reaction: Biginelli/ hydrolysis. The plausible mechanism for the formation of DHPMs using NaNO₃ is depicted in Scheme 4.

Scheme 4: Plausible mechanism for the formation of compounds 5

Prompted by the effectiveness of NaNO₃ as catalyst, we have applied, the present onestep method in the synthesis of some octahydroquinazolinone derivatives from 2-chloro-1,2dihydroquinoline-3-carbaldehyde derivatives **1**, urea **2** and dimedone**3b**, prepared in previous reports by M. Pushpak*et al*.in two steps [24](Scheme 5).

Scheme 5: One-pot synthesis of substituted octahydroquinazolinone6 catalyzed by NaNO₃

Interestingly, we found that $NaNO_3$ worked well, and the condensation took place efficiently to give the expected products **6** (Table 3).

Table 3: The yield (%) of tetrahydroquinazoline-2	, 5(1 <i>H</i> ,6 <i>H</i>)-dione derivatives6
---	---

Product ^a	R	Yield (%)	<u>Mp (°C)</u>	
			Found Reported	
6a	Н	87	280-283 284-286[24]	
6b	6-Me	80	294-297 293-295[24]	
6c	6-OMe	78	292-295 294–296[24]	

Reaction conditions: Aldehyde (2.5 mmol), dimedone (2.5 mmol), urea (2.5 mmol), NaNO₃ (20 mol %), methanol/water (3.0 ml, 1/1) at reflux temperature.

^aAll compounds are known and are identified by their melting points and spectral data

CONCLUSION

We have developed a novel, simple and convergent one pot reaction for the construction of 4-[2-oxo-1,2-dihydroquinolin-3-yl)]-3,4-dihydropyrimidin-2(1*H*)-ones and some 4-(2-oxo-1,2-dihydroquinolin-3-yl)-3,4,7,8-tetrahydroquinazoline-2,5(1*H*,6*H*)-dione derivatives from the corresponding 2-chloro-3-formylquinoline derivatives which were obtainable only with sequenced linear processes.

The present procedure offers several advantages including mild reaction conditions, good yields of products, and a recoverable catalyst which make it an alternative, and an attractive process for the synthesis of such heterocyclic compounds.

ACKNOWLEDGEMENTS

We gratefully acknowledge the MESRES (Ministère de l'EnseignementSupérieuret de la RechercheScientifique) for financial support.

REFERENCES

- (A)Kappe CO. Tetrahedron 1993; 49: 6937; (b) Kappe CO. AccChem Res 2000; 33: 879;
 (c) Kappe CO. Eur JMed Chem 2000; 35: 1043.
- [2] Ashok M, Holla BS, Kumari NS. Eur J Med Chem 2007; 42: 380.
- [3] Hurst EW, Hull R. J Med Pharm Chem 1961; 3: 215.
- [4] Bahekar SS, Shinde DB. Bioorg Med ChemLett 2004; 14: 1733.
- [5] Magerramov AM, Kurbanova, MM, Abdinbekova RT, Rzaeva IA, Farzaliev VM, Allakhverdiev MA. Russ J ApplChem 2006; 79: 787.
- [6] Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O'Reilly BC. J Med Chem 1991; 34: 806.
- [7] Rovnyak GC, Atwal KS, Hedberg A, Kimball SD, Moreland S, Gougoutas JZ, O'Reilly BC, Schwartz J, Malley MF. J Med Chem 1992; 35: 3254.
- [8] Grover GJ, Dzwonczyk S, McMullen DM, Normandin DE, Parham CS, Sleph PG, Moreland SJ.Cardiovasc Pharm 1995; 26: 289.
- (a) Nagarathnam D, Miao SW, Lagu B, Chiu G, Fang J, Dhar TGM, Zhang J, Tyagarajan S, Marzabadi MR, Zhang FQ, Wong WC, Sun WY, Tian D, Wetzel JM, Forray C, Chang RSL, Broten TP, et al., J Med Chem 1999; 42: 4764; (b) Barrow JC, Nantermet PG, Selnick HG, Glass KL, Rittle KE, Gilbert KF, Steele TG, Homnick CF, et al., Med Chem 2000; 43: 2703.
- [10] (a) Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Science 1999; 286: 971; (b) Haggarty SJ, Mayer TU, Miyamoto DT, Fathi R, King RW, Mitchison TJ, Schreiber SL.ChemBiol 2000; 7: 275.
- [11] Heys L, Moore CG, Murphy PJ.ChemSoc Rev 2000; 29: 57.
- [12] Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, De Brosse C, Mai S, Truneh A, Faulkner DJ, Carte B, Breen AL, Hertzberg RP, Johnson RK, Westley JW, Potts. BCMJ Org Chem 1995; 60: 1182.
- [13] Libel R, Randle R, Mildenberger H, Bauer K, Biernger H. Chen Abstr 1988; 108(1): 6018.
- [14] Harrison EA, Rice KC. J Heterocyclic Chemistry 1977; 14: 909.
- [15] Mitsos CA, ZografosAlexanandrons L. J Org Chem 2003; 68: 4567.
- [16] Narsinh DS, Anamik.Indian J Heterocyclic Chem 2000; 10: 69.
- [17] Patel N B, Patel AL, Chauhan HI. Indian Journal of Chemistry 2007;46B: 126.
- [18] World Health Organisation, Tuberculosis Fact Sheet, 2006, No, 104.
- [19] Nayayar A, Malde A, Coutinho E, Bioorg Med Chem. 2007; 15: 7302.
- [20] (a) Kidwai M, Saxena S, Khan MKR and Thukral SS.Eur J Med Chem 2005; 40: 816;
 (b)Kantevari M, Bantu R and Nagarapu L.Arkivoc 2006; 16: 136.
- [21] (a) Sarac S, Yarim M, ErtanM, KilicFS and Erol K. ArzneimForsch Drug Res 2002; 52:27.
- [22] Yarim M, Sarac S, Kilic FS and Erol K.IIFarmaco 2003; 58: 17.
- [23] Lin H, Zhao Q, Xu B, Wang X. J MolCatal2007;268(1-2): 221.

January – March 2013 RJPBCS Volume 4 Issue 1

- [24] (a) Pushpak MS, Manish P, Patel Med. Chem. Res. 2012; 21(7): 1188; (b) PrakashNaik HR, BhojyaNaik HS, Aravinda T.Afr J Pure ApplChem 2009; 3: 202.
- [25] Meth-Cohn O, Narine B, Tarnowski BJ.ChemSoc Perkin Trans 1981; 1520.
- [26] (a) Ji SJ,WangSY,Zhang Y, Loh TP. Tetrahedron 2004; 60: 2051; (b) Wang SY, Ji SJ, Tetrahedron 2006; 62: 1527.
- [27] Manikandan S, Shanmugasundaram M, Raghunathan R. Tetrahedron 2002; 58:8957.