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ABSTRACT 
 

This paper describes Quantitative Structure Property Relationship (QSPR) method for prediction of 
refractive index values of organic compounds based on molecular descriptors derived from molecular structures. A 
genetic algorithm based Unsupervised forward selection method is used to select the most statistically effective 
molecular descriptors computed with E-DRAGON software for the present study. Associative Neural Network 
(ASNN) and Polynomial Neural Network (PNN) methods are used to construct the Non-linear prediction models. 
The selected descriptors are used as input data for training and testing the Associative Neural Network and 
Polynomial Neural Network. Predicted results are in good agreement with the experimental refractive index of 
organic compounds. The results are cross-validated by Leave-one-out (LOO) cross-validation procedure. 
Comparison of ASNN and PNN reveals that ASNN predicts refractive indices with better accuracy with R

2
=0.962.

 

The results of this study indicate that it is possible to estimate the refractive index of organic compounds from 
their theoretically derived molecular descriptors. 
Keywords: QSPR model, Refractive index, Descriptors, Associative Neural network (ASNN), Polynomial Neural 
Network (PNN). 
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INTRODUCTION 
 

  The refractive index (n) plays a vital role in many branches of physics, biology and 
chemistry. The refractive index is a unit less parameter which is one of the most significant 
optical properties that is frequently employed to characterize organic compounds [1]. It is 
defined as the ratio of the speed of light in vacuum to the speed of light in the tested 
compound. It has been used as an indicator of the purity of organic compounds, but the 
relationship of refractive index to other optical, electrical, and magnetic properties has more 
significance. Since refractive index is a fundamental physical property of a substance, it is often 
used to identify a particular substance, or measure its concentration. Refractive index is used to 
measure solids, liquids, and gases. Most commonly, it is used to measure the concentration of a 
solute in an aqueous solution [2, 3]. 
 
Quantitative Structure Property Relationship (QSPR) 
 

The chemical and physical properties of a compound are a function of its molecular 
structure. Structure-property relationships are developed by finding one or more molecular 
descriptors derived from structure that explains variations in the physical or chemical 
properties of a group of congeners/analogs. While some descriptors can be determined 
experimentally, deriving them from either the two-dimensional (2-D) or three-dimensional (3-
D) molecular structure is generally more convenient and practical. A relationship, once 
established, can be used to estimate the properties of other molecules simply from their 
structures and without the need for experimental determination or synthesis. This has resulted 
in the development of quantitative structure property relationships (QSPRs) as an important 
tool in chemical, biological, and environmental research. When a structure-property 
relationship is found, it may also provide insight into which aspect of the molecular structure 
influences the property. Such insight can facilitate a systematic approach to the design of new 
molecules with more desirable properties. QSPR development requires three basic steps (i) a 
property data set, measured experimentally (ii) Molecular Descriptors, which are the 
Quantitative descriptions of structural properties, and (iii) Statistical method or Neural network 
approach to establish the relationship between molecular descriptors and properties [4]. One 
of the important problems in QSPR is the description of molecular structures using molecular 
descriptors, which can include structural information as much as possible. Theoretical 
descriptors such as constitutional descriptors and topological indices have found the major 
popularity in QSPR studies for several reasons such as  

 
a)  Their calculation is simple and fast,  
b)  They do not need information about three dimensional structure of molecules,  
c)  They are exact number without uncertainty and  
d) They represent high correlation with many physico-chemical properties [5]  

 
The most familiar standard approaches to QSPR are based on statistical methods such as 

Multiple Linear Regression, Cluster analysis, Principal component analysis and Partial least 
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square regression [6]. For the prediction of physical properties, high-quality models are 
obtained based on predictive equations using linear regression techniques, are used to 
correlate structure related descriptors with observed properties. The models developed on 
Multiple linear regression requiring a priori assumption of the linear form of the mathematical 
correlation model. Such models do not consider the non-linearity that may exist among the 
input descriptors and calculated property. The above deficiencies have been addressed in the 
past using Neural Networks. Currently, neural networks are used with encouraging success in 
development of various QSPR models. An artificial neural network (ANN) represents non-linear 
methods and well suited to describe structure-property models. Moreover, ANN is able to 
consider not only particular structure characteristics, but also interrelations and 
interdependencies between mutually influencing structural features. Therefore, they can be 
easily adapted for processing large data set formed by a set of descriptors [7-9].  
   

In the literature, most of the papers are reported for prediction of refractive index using 
Multivariate regression. Ivanciuc etal. published a paper which employs Multiple linear 
regression as a tool for prediction of refractive index of 134 alkanes [10]. Their model involves 
Wiener polynomial descriptors yielded a correlation coefficient(R) of 0.98. Katrizky etal.(1998) 
have designed a CODESSA software based 5 descriptor model [11] for a data set of 125 organic 
compounds having a R2 of 0.945. Xihua and Juguan published a paper which employs Multiple 
linear regression as a tool for prediction of refractive index of 64 alkanes [12]. Their model 
involves a new structure information autocorrelation index yielded a correlation coefficient(R) 
of 0.98. Only few works are available in literature for prediction of refractive index of organic 
compounds using neural network.  Hence, this paper explains Associative neural network 
(ASNN) and Polynomial Neural Network (PNN) based  prediction of refractive index of organic 
compounds based on  8  descriptors provided by E-DRAGON [13] having specific physical 
meaning corresponding to different molecular interactions.  
 

MATERIALS AND METHODS 
 

Data 
 

The source of experimental refractive index values of 148 compounds at 200C 
(wavelength 589nm) are collected from [11, 14].  
 
Molecular descriptors 
  

The chemical structures of the 148 organic compounds are drawn with 
MarvinSketch(Chemaxon) [15] and exported as SMILES notation. Next, organic compounds 
represented by SMILES format are used as input for the online software, E-Dragon (vcclab) 
which converts the molecules from SMILES notation into 3-dimensional structures, and then it 
calculates various types of descriptors. 
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Selection of Molecular descriptors 
 

The challenge in developing the QSPR model is the selection of molecular descriptors 
from the pool of available descriptors that strongly correlate with desired physical property. 
The use of all available descriptors in the model development causes dimensionality problems. 
Further, the use of redundant or irrelevant descriptors decreases the capability of prediction 
the performance of a QSPR model, especially when non-linear algorithms are used in model 
development. The descriptor selection process involves the identification of the most relevant 
set of descriptors for model development and is the most important step in all QSPR 
development efforts. Several different methods are described in literature for descriptor 
selection. The most widely used techniques are Principal component analysis (PCA), Partial least 
squares (PLS) and Unsupervised Forward selection. 
 

Unsupervised Forward Selection (UFS) is a data selection process by deleting redundant 
or irrelevant variables that selects from a data matrix a maximal linearly independent set of 
columns with a minimal amount of multiple correlations [16]. UFS was designed for use in the 
development of QSPR models, where the m by n data matrix contains the values of n variables 
(typically molecular properties) for m objects (typically compounds). QSPR data sets often 
contain redundancy (exact linear dependencies between subsets of the variables), and 
multicollinearity (high multiple correlations between subsets of the variables). Both of these 
features decrease the development of QSPR models with the ability to generalize successfully 
to new objects. Continuum regression, an algorithm encompassing ordinary least squares 
regression, regression on principal components, and partial least squares regression, are used 
to construct models from the selected variables. UFS produces a reduced data set that contains 
no redundancy and a minimal amount of multicollinearity. The variable selection routine is 
shown to produce simple, robust, and easily interpreted models for the chosen data sets. The 
freeware for employing Unsupervised Forward selection is available online at [17]. 
 
Neural network 
 

A neural network is a efficient data modeling tool that is able to capture and represent 
complex non-linear input/output relationships. Neural network technology performs 
"intelligent" tasks similar to those performed by the human brain. A neural network may simply 
be viewed as a highly parallel computational device typically used when there are a large 
number of observations and when the problem is not understood well enough to write a 
procedural program or expert system. The ANN are trained to perform a particular function by 
adjusting the values of the connections, or weights, between elements until a particular input 
leads to a specific output.  The ANN consists of three layers: input, hidden and output layers.   
These three layers are connected with each other.  The input layer receives the input data from 
computer user and sends them to the hidden layer.  The hidden layer contains interconnected 
neurons for the pattern recognition and the relevant information interpretation for adjusting 
the weights on the connections.  Afterwards, the results from the hidden layer are sent to the 
output layer for the outputs.  The neurons contain several functions and variables including 
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weights, non-linear transfer functions, methods to add up all inputs and bias values.  The sum 
of all products of all the inputs multiplied with the weights and the bias values passes through a 
non-linear transfer function as the output of each neuron [18]. A neural network is thus a 
mathematical model to represent a non-linear hypersurface. The increasing interest and 
availability of neural network has prompted several groups to apply this technology in QSPR 
studies for prediction of physical and chemical properties effectively [19]. 
 
Associative neural network 

 
The traditional artificial feed forward neural network is a memory-less approach. This 

means that after training is complete, all information about the input patterns is stored in the 
neural network weights and input data are no longer needed, i.e. there is no explicit storage of 
any presented example in the system. In Contrast, ASNN is a method with improved predictive 
abilities including combination of memory-based and memory-less method. It offers an elegant 
approach to incorporate “on the fly” the user’s data *20+. The ASNN is an extension of the 
committee of machines that goes beyond a simple/weighted average of different models. An 
ASNN is a combination of an ensemble of feed forward neural networks (memory-less) and the 
K – nearest neighbour technique (memory-based). It uses the correlation between ensemble 
responses as a measure of distance among the analyzed cases for the nearest neighbour 
techniques. An associative neural network has a memory that can agree with training set. If 
new data is available the network improves its predictive ability and gives a good 
approximation of unknown function without a need to retrain the neural network ensemble. 
This method dramatically enhances its predictive ability over traditional neural network and K–
nearest neighbour techniques [21]. 
  

The ASNN models are selected based on selection processes that include the algorithm, 
the number of neurons and hidden layers, and the iterations and number of ensembles. The 
early stopping over ensemble (ESE) method was used for training the neural networks). In ESE, 
initial training sets were randomly constructed with equal size learning and validation sets for 
each neural network in the ensemble. Thus, each neural network had its own learning and 
validation sets. The learning set was used for adjusting neural network weights. The training is 
stopped when a minimum error for the validation set is calculated (‘early stopping point’). 
Following ensemble learning, a simple average of all networks is used for predicting the test 
patterns. The developed algorithm of ASNN is available online at the Vcclab website [22]. 
 
Polynomial Neural network 
 

Polynomial Neural Network (PNN) represents a promising method for applications in 
QSPR and QSAR studies. It provides the model in parametric form as an equation that can be 
easily interpreted by the users. It is a iterational heuristic algorithm of Group method of Data 
Handling (GMDH). GMDH was originally proposed by Prof. A.G. Ivakhnenko in Late 1960s for 
identifying non-linear relation between input and output variables. PNN (also known as GMDH) 
represents a group of inductive algorithms for computer-assisted mathematical modeling of 
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multi-parametric datasets that features fully automatic structural and parametric optimization 
of models. Inductive algorithms provide the possibility to find automatically interrelations in 
data, to select optimal structure of model or network and to decrease the error of existing 
algorithms. PNN is applied in a great variety of areas for data mining and knowledge discovery, 
forecasting and systems modeling, optimization and pattern recognition. PNN calculates 
analytical non-linear models between descriptors of organic compounds and the target physico-
chemical property and provides a clear interpretation of the detected relations. The structure 
of PNN is similar to that of a feed forward neural network. A neuron of feed forward network is 
replaced by a neuron of PNN [23]. The developed software for PNN is available online at [24]. 
 

RESULTS AND DISCUSSION 
 

E-DRAGON software is used to compute more than 1600 descriptors for each compound 
and all the descriptors are not relevant to the property (Refractive index) considered. 
Therefore, Unsupervised forward selection (UFS) method is employed for descriptor selection 
in the present study. The Descriptors selected for present study must not be highly correlated.  
Only those descriptors having intercorrelation co-efficient below 0.91 are considered for the 
present study. The selected descriptors involved in the present QSPR model are: 

 

(i) C001 : Atom centered fragments/ CH3R 

(ii) nX  :Number of Halogen atoms  

(iii) RBF :Rotatable Bond Fraction 

(iv) AMW :Average Molecular Weight 

(v) X2Av  :Average valence connectivity index chi-2  

(vi) nNr     :Relative Number of Nitrogen atoms. 

(vii) Mp  :Mean Atomic Polarizability(Scaled on Carbon atom) 

(viii) Sp  :Sum of Atomic Polarizabilties(Scaled on Carbon atom) 
 

C-001 is a atom centered fragment descriptor defined by counting first neighbours of 
carbon atoms (CH3R), where R is the presence of heteroatoms.  nX is a constitutional descriptor 
simply computed by sum of counts of Halogen atoms. The RBF is a constitutional descriptor 
which represents fraction of rotatable bonds. The average molecular weight (AMW) is obtained 
by dividing molecular weight with total number of atoms. nNr is the relative number of 
Nitrogen atoms obtained by dividing the number of nitrogen atoms with Number of atoms. 
X2Av is a topological descriptor encodes presence of heteroatom, double and triple bonds 
calculated from hydrogen suppressed graph. Mp is a constitutional descriptor calculated by 
dividing sum of atomic polarizabilities by Number of atoms. Sp is also a constitutional descriptor 
calculated by sum of atomic polarizabilities. 
  

The selected descriptors and the experimental refractive index values are listed in Table 
1. The data set is randomly divided into two subsets one for training set and the other for 
testing. The data set in Table1 is used for training and it is used to build models using ASNN and 
PNN. During the Training process, the network involves eight neurons (eight descriptors) in the 
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input layer, seven neurons in the hidden layer and one neuron (Refractive index (n)) in the 
output layer. The network is trained using the LevenBerg Marquardt algorithm. The input and 
output data are normalized in the range of 0.1 to 0.9 and logistic activation function is used for 
all neurons. Number of hidden neuron is decided by training and predicting the ‘training data’ 
by varying the number of hidden neurons in the hidden layer. A sufficient training level is not 
reached with smaller number of neurons and overfitting exists with a larger number of neurons 
in the hidden layer. Out of the different configuration tested, a hidden layer with 7 hidden 
neurons give the optimum result for prediction of refractive index of organic compounds. The 
seed number is used in to start sequence of random numbers for neural network weights 
initialization and partition of initial training set data on Training /test sets. During training 
process the seed number is adjusted until best model is obtained. The architecture of the final 
model is shown in Table 2. 
 
Table 1: Molecular descriptors, Experimental and Computed Refractive index values for Training set using ASNN 

and PNN. 
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1 Ethylbromide 1 1 0 13.62 1.389 0 0.7 5.64 1.42 1.42 0 1.42 0 

2 Propane 2 0 0 4.01 0.707 0 0.55 6.05 1.29 1.3 -0.01 1.31 -0.02 

3 1-Chloropropane 1 1 0 7.14 0.533 0 0.63 6.9 1.39 1.39 0 1.39 0 

4 2-Methylbutane 3 0 0.063 4.25 0.451 0 0.56 9.57 1.36 1.36 0 1.36 0 

5 2,2,3-Trimethylbutane 5 0 0.045 4.36 0.391 0 0.57 13.1 1.39 1.39 0 1.38 0.01 

6 Cyclobutane 2 0 0.077 4.15 0.5 0 0.56 7.81 1.37 1.36 0.01 1.35 0.02 

7 1-Chlorobutane 1 1 0.077 6.61 0.474 0 0.62 8.66 1.4 1.4 0 1.4 0 

8 2-Chloro butane 2 1 0.077 6.61 0.484 0 0.62 8.66 1.4 1.39 0.01 1.38 0.02 

9 1,3-Dibromobutane 1 2 0.077 15.42 0.723 0 0.75 10.5 1.51 1.5 0.01 1.51 0 

10 n-Butylbromide 1 1 0.077 9.79 0.612 0 0.65 9.16 1.44 1.44 0 1.46 -0.02 

11 Pentane 2 0 0.125 4.25 0.451 0 0.56 9.57 1.36 1.37 -0.01 1.36 0 

12 3-MethylPentane 3 0 0.105 4.31 0.384 0 0.57 11.3 1.38 1.38 0 1.38 0 

13 2,4 Dimethyl pentane 4 0 0.091 4.36 0.432 0 0.57 13.1 1.38 1.39 -0.01 1.38 0 

14 2-Methyl-3 ethyl pentane 4 0 0.12 4.39 0.353 0 0.57 14.9 1.4 1.4 0 1.4 0 

15 2,2,4 Trimethyl pentane 5 0 0.08 4.39 0.416 0 0.57 14.9 1.39 1.39 0 1.39 0 

16 Propylcyclopentane 1 0 0.083 4.68 0.327 0 0.59 14.1 1.43 1.44 -0.01 1.45 -0.02 

17 Butylcyclopentane 1 0 0.111 4.68 0.329 0 0.59 15.9 1.43 1.44 -0.01 1.46 -0.03 

18 Hexylcyclopentne 1 0 0.152 4.68 0.333 0 0.59 19.4 1.44 1.45 -0.01 1.47 -0.03 

19 Hexane 2 0 0.158 4.31 0.427 0 0.57 11.3 1.38 1.38 0 1.38 0 

20 2,3 Dimethyl Hexane 4 0 0.12 4.39 0.376 0 0.57 14.9 1.41 1.4 0.01 1.4 0.01 

21 2,4 Dimethyl hexane 4 0 0.12 4.39 0.393 0 0.57 14.9 1.4 1.4 0 1.4 0 

22 2-Methyl 3 ethyl hexane 4 0 0.143 4.42 0.356 0 0.57 16.6 1.41 1.41 0 1.41 0 

23 Cyclohexane 0 0 0 4.68 0.354 0 0.59 10.6 1.43 1.43 0 1.44 -0.01 

24 4-Methylheptane 3 0 0.16 4.39 0.383 0 0.57 14.9 1.4 1.4 0 1.4 0 
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25 2,4-dimethyl heptane 4 0 0.143 4.42 0.391 0 0.57 16.6 1.4 1.41 -0.01 1.4 0 

26 2,3-Dimethyl-5 Ethylheptane 5 0 0.147 4.47 0.345 0 0.58 20.1 1.42 1.42 0 1.43 -0.01 

27 Cycloheptane 0 0 0 4.68 0.354 0 0.59 12.3 1.45 1.45 0 1.46 -0.01 

28 2-Methyl octane 3 0 0.179 4.42 0.405 0 0.57 16.6 1.4 1.41 -0.01 1.41 -0.01 

29 2,3 Dimethyloctane 4 0 0.161 4.45 0.372 0 0.57 18.4 1.41 1.41 0 1.41 0 

30 2,6-Dimethyl octane 4 0 0.161 4.45 0.384 0 0.57 18.4 1.41 1.41 0 1.41 0 

31 2,2,3-Trimethyl octane 5 0 0.147 4.47 0.366 0 0.58 20.1 1.42 1.42 0 1.42 0 

32 2,3,5-Trimethyl octane 5 0 0.147 4.47 0.363 0 0.58 20.1 1.42 1.42 0 1.42 0 

33 Nonane 2 0 0.214 4.42 0.395 0 0.57 16.6 1.41 1.41 0 1.41 0 

34 2-Methyl Nonane 3 0 0.194 4.45 0.4 0 0.57 18.4 1.41 1.41 0 1.41 0 

35 Decane 2 0 0.226 4.45 0.39 0 0.57 18.4 1.41 1.42 -0.01 1.41 0 

36 4-Methyldecane 3 0 0.206 4.47 0.374 0 0.58 20.1 1.42 1.42 0 1.42 0 

37 Undecane 2 0 0.235 4.47 0.386 0 0.58 20.1 1.44 1.43 0.01 1.43 0.01 

38 n-Dodecane 2 0 0.243 4.48 0.383 0 0.58 21.9 1.42 1.43 -0.01 1.43 -0.01 

39 n-Pentadecane 2 0 0.261 4.52 0.376 0 0.58 27.2 1.43 1.43 0 1.43 0 

40 n-Heptadecane 2 0 0.269 4.54 0.373 0 0.58 30.7 1.44 1.44 0 1.42 0.02 

41 Dimethoxymethane 0 0 0.167 5.85 0.232 0 0.53 6.95 1.35 1.37 -0.02 1.38 -0.03 

42 Dimethoxy ethane 1 0 0.133 5.63 0.208 0 0.54 8.72 1.38 1.39 -0.01 1.39 -0.01 

43 Diethoxy methane 2 0 0.222 5.48 0.221 0 0.55 10.5 1.37 1.37 0 1.37 0 

44 1,1-Diethoxyethane 3 0 0.19 5.37 0.211 0 0.56 12.2 1.38 1.39 -0.01 1.39 -0.01 

45 1-Methoxypropane 1 0 0.143 4.94 0.331 0 0.55 8.26 1.36 1.37 -0.01 1.37 -0.01 

46 2-Methoxypropane 2 0 0.071 4.94 0.321 0 0.55 8.26 1.36 1.37 -0.01 1.37 -0.01 

47 1-Ethoxypropane 2 0 0.176 4.9 0.299 0 0.56 10 1.37 1.37 0 1.37 0 

48 2-Ethoxy ethyl ether 2 0 0.286 5.6 0.223 0 0.56 16.2 1.41 1.41 0 1.4 0.01 

49 Benzyl ethyl ether 1 0 0.136 6.19 0.193 0 0.64 14 1.5 1.49 0.01 1.5 0 

50 Propyl ether 2 0 0.2 4.87 0.322 0 0.56 11.8 1.38 1.39 -0.01 1.38 0 

51 Iso propyl ether 4 0 0.1 4.87 0.319 0 0.56 11.8 1.37 1.38 -0.01 1.38 -0.01 

52 n-Amyl ether 2 0 0.241 4.81 0.334 0 0.57 17.1 1.41 1.41 0 1.41 0 

53 Ethyl octyl ether 2 0 0.25 4.8 0.329 0 0.57 18.8 1.41 1.42 -0.01 1.42 -0.01 

54 2-Chloro ethyl ether 0 2 0.143 9.53 0.349 0 0.67 9.98 1.46 1.45 0.01 1.45 0.01 

55 Methanol 0 0 0 5.34 0 0 0.5 2.98 1.33 1.33 0 1.34 -0.01 

56 Ethanol 1 0 0 5.12 0.316 0 0.53 4.74 1.36 1.35 0.01 1.35 0.01 

57 2-Iodoethanol 0 1 0 19.11 0.746 0 0.82 7.4 1.57 1.56 0.01 1.57 0 

58 2-Propanol 2 0 0 5.01 0.365 0 0.54 6.5 1.38 1.37 0.01 1.35 0.03 

59 2-Pentanol 2 0 0.118 4.9 0.328 0 0.56 10 1.41 1.39 0.02 1.39 0.02 

60 Allyl alcohol 0 0 0.111 5.81 0.236 0 0.57 5.74 1.41 1.4 0.01 1.39 0.02 

61 Benzyl alcohol 0 0 0.045 5.19 0.299 0 0.58 12.8 1.54 1.49 0.05 1.47 0.07 

62 1-Butanol 1 0 0.143 4.94 0.359 0 0.55 8.26 1.4 1.38 0.02 1.37 0.03 

63 tert-Butyl alcohol 3 0 0 4.94 0.362 0 0.55 8.26 1.38 1.37 0.01 1.36 0.02 

64 1-Butoxy-2-propanol 2 0 0.208 5.29 0.285 0 0.56 14 1.42 1.41 0.01 1.41 0.01 

65 1,2 Ethane diol 0 0 0.111 6.21 0.224 0 0.52 5.19 1.43 1.4 0.03 1.38 0.05 

66 1-Hexanol 1 0 0.2 4.87 0.357 0 0.56 11.8 1.42 1.4 0.02 1.4 0.02 

67 1-Heptanol 1 0 0.217 4.84 0.356 0 0.56 13.6 1.42 1.41 0.01 1.41 0.01 

68 1-Octanol 1 0 0.231 4.82 0.356 0 0.57 15.3 1.43 1.42 0.01 1.42 0.01 

69 Cyclopentanol 0 0 0 5.38 0.277 0 0.58 9.26 1.45 1.44 0.01 1.44 0.01 
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70 Methyl formate 0 0 0.143 7.51 0.166 0 0.55 4.43 1.34 1.36 -0.02 1.38 -0.04 

71 Ethyl formate 1 0 0.2 6.74 0.184 0 0.56 6.19 1.36 1.36 0 1.37 -0.01 

72 Ethyl acetate 2 0 0.154 6.29 0.185 0 0.57 7.95 1.37 1.38 -0.01 1.38 -0.01 

73 Propyl formate 1 0 0.231 6.29 0.242 0 0.57 7.95 1.38 1.37 0.01 1.37 0.01 

74 Methyl propanoate 1 0 0.154 6.29 0.186 0 0.57 7.95 1.38 1.39 -0.01 1.4 -0.02 

75 Butyl formate 1 0 0.25 6.01 0.264 0 0.57 9.72 1.39 1.39 0 1.38 0.01 

76 3-Methylbutyl acetate 3 0 0.182 5.66 0.28 0 0.58 13.2 1.4 1.41 -0.01 1.41 -0.01 

77 Propyl butanoate 2 0 0.227 5.66 0.246 0 0.58 13.2 1.4 1.41 -0.01 1.41 -0.01 

78 Allyl acetate 1 0 0.214 6.68 0.182 0 0.6 8.95 1.4 1.41 -0.01 1.41 -0.01 

79 Benzyl acetate 1 0 0.143 7.15 0.174 0 0.65 13.7 1.52 1.51 0.01 1.52 0 

80 Octyl acetate 2 0 0.258 5.38 0.283 0 0.58 18.5 1.42 1.42 0 1.43 -0.01 

81 Phenyl acetate 1 0 0.111 7.56 0.159 0 0.66 12 1.5 1.51 -0.01 1.51 -0.01 

82 Ethyl trifluoroacetate 1 3 0.154 10.15 0.111 0 0.55 7.77 1.31 1.31 0 1.31 0 

83 Ethyl fluoroacetate 1 1 0.154 7.58 0.156 0 0.56 7.89 1.38 1.38 0 1.37 0.01 

84 Acetaldehyde 1 0 0 6.29 0.236 0 0.57 3.98 1.33 1.34 -0.01 1.36 -0.03 

85 Benzaldehyde 0 0 0.071 7.58 0.17 0 0.7 9.74 1.55 1.54 0.01 1.53 0.02 

86 Butyraldehyde 1 0 0.167 5.55 0.318 0 0.58 7.5 1.38 1.38 0 1.38 0 

87 Diethylamine 2 0 0.133 4.57 0.319 0.1 0.55 8.81 1.39 1.39 0 1.37 0.02 

88 Triethylamine 3 0 0.143 4.6 0.27 0 0.56 12.3 1.4 1.4 0 1.4 0 

89 Propylamine 1 0 0.083 4.55 0.394 0.1 0.54 7.05 1.39 1.39 0 1.39 0 

90 Dipropylamine 2 0 0.19 4.6 0.35 0 0.56 12.3 1.4 1.41 -0.01 1.41 -0.01 

91 Butylamine 1 0 0.133 4.57 0.381 0.1 0.55 8.81 1.4 1.41 -0.01 1.4 0 

92 tert-butyl amine 3 0 0 4.57 0.394 0.1 0.55 8.81 1.37 1.37 0 1.38 -0.01 

93 Isobutylamine 2 0 0.067 4.57 0.407 0.1 0.55 8.81 1.4 1.4 0 1.39 0.01 

94 Diisobutylamine 4 0 0.148 4.62 0.383 0 0.57 15.9 1.41 1.41 0 1.42 -0.01 

95 Allylamine 0 0 0.1 5.19 0.262 0.1 0.57 6.29 1.42 1.42 0 1.43 -0.01 

96 Benzylamine 0 0 0.043 4.92 0.304 0 0.58 13.3 1.54 1.53 0.01 1.54 0 

97 Aniline 0 0 0 6.65 0.176 0.1 0.66 9.29 1.59 1.57 0.02 1.58 0.01 

98 Ethyl Aniline 1 0 0.1 6.06 0.19 0.1 0.64 12.8 1.56 1.54 0.02 1.55 0.01 

99 p-Fluoroaniline 0 1 0 7.94 0.155 0.1 0.66 9.23 1.52 1.51 0.01 1.52 0 

100 Pentyl amine 1 0 0.167 4.59 0.374 0.1 0.56 10.6 1.45 1.43 0.02 1.42 0.03 

101 Heptyl amine 1 0 0.208 4.61 0.367 0 0.56 14.1 1.42 1.43 -0.01 1.45 -0.03 

102 Acetone 2 0 0 5.81 0.303 0 0.57 5.74 1.36 1.36 0 1.36 0 

103 2-Heptanone 2 0 0.19 5.19 0.308 0 0.58 12.8 1.41 1.41 0 1.41 0 

104 3-Hexanone 2 0 0.167 5.27 0.274 0 0.58 11 1.4 1.4 0 1.4 0 

105 2-Octanone 2 0 0.208 5.13 0.314 0 0.58 14.6 1.42 1.41 0.01 1.42 0 

106 Cyclohexanone 0 0 0 5.77 0.262 0 0.6 10.3 1.45 1.46 -0.01 1.46 -0.01 

107 Cyclo heptanone 0 0 0 5.61 0.273 0 0.6 12 1.46 1.47 -0.01 1.48 -0.02 

108 Iso propyl acetone 3 0 0.111 5.27 0.329 0 0.58 11 1.4 1.4 0 1.4 0 

109 Methyl vinyl ketone 1 0 0.1 6.37 0.204 0 0.61 6.74 1.41 1.41 0 1.41 0 

110 Diethyl ketone 2 0 0.133 5.38 0.249 0 0.58 9.26 1.39 1.39 0 1.39 0 

111 Methyl propyl ketone 2 0 0.133 5.38 0.29 0 0.58 9.26 1.39 1.39 0 1.39 0 

112 Ethyl phenyl ketone 1 0 0.1 6.71 0.179 0 0.66 13.3 1.53 1.51 0.02 1.52 0.01 

113 Methyl isopropyl ketone 3 0 0.067 5.38 0.294 0 0.58 9.26 1.39 1.39 0 1.39 0 

114 Ethyl propyl ketone 2 0 0.167 5.27 0.274 0 0.58 11 1.4 1.4 0 1.4 0 

115 Dipropyl ketone 2 0 0.19 5.19 0.291 0 0.58 12.8 1.41 1.41 0 1.41 0 
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116 Acetylacetone 2 0 0.143 6.68 0.226 0 0.6 8.95 1.45 1.42 0.03 1.41 0.04 

117 1-pentene 1 0 0.143 4.68 0.359 0 0.59 8.81 1.37 1.38 -0.01 1.38 -0.01 

118 3-Ethyl-2-pentene 3 0 0.1 4.68 0.276 0 0.59 12.3 1.41 1.41 0 1.41 0 

119 1-Hexene 1 0 0.176 4.68 0.358 0 0.59 10.6 1.38 1.39 -0.01 1.4 -0.02 

120 Cyclo hexane 0 0 0 5.14 0.293 0 0.61 9.81 1.45 1.44 0.01 1.45 0 

 
Table 2: Architecture and Specification of the generated ASNN 

 

No. of nodes in the input layer 8 

No. Of nodes in the hidden layer 7 

No. of nodes in the output layer 1 

Seed value 78 

Number of KNN 10 

Activation function Logistic  1/(1+exp(-x)) 

 

Internal Validation 
 

Cross-validation is a statistical method to evaluate the stability of developed models. In 
this validation technique, a number of modified data sets are created by deleting, one 
compound. For each reduced data set, the model is calculated and responses for the deleted 
compounds are predicted from the model. In this study, the predictive power of the models is 
checked by leave-one-out (LOO) cross-validation and the square of the cross-validated 
correlation coefficient (q2) is used to measure the models predictivity. A good correlation is 
obtained with LOO correlation co-efficient q2 =0.961 for training and 0.939 for testing. So the 
predictive power of the ASNN model is very significant. 
 
External validation 
 

After the Cross-validation process, predictive ability of the model is estimated from an 
external test set of compound not included in the training set. The test set included 28 
compounds with diverse set of chemical compounds.  The predicted refractive index for 28 
compounds using ASNN is given in Table 3. The quality of prediction is evaluated by using two 
parameters: squared correlation co-efficient (R2) and Root mean square error (RMSE). The high 
value of R2 and low value of RMSE indicated a more stable model. The statistical performance of 
the Associative Neural Network QSPR model for refractive index estimation is summarized in 
Table 4.  The Root mean square errors of ASNN model for training and testing are 0.01 and 
0.0098 respectively. Figure 1 shows scatter plot of the ASNN predicted versus experimental 
values of refractive indices for training and test set. Squared correlation co-efficient (R2) of 
0.962 for training  and 0.9527 for testing  confirms the suitability of the ASNN model and shows 
a good agreement of ASNN predicted values with experimental one. Analyzing the residual 
values obtained for training and testing , it can be concluded that 130 out of 148 cases, the 
model described by  ASNN resulted in better values(from 0.00 to 0.01), This confirms the 
refractive index of organic compounds are strongly dependent on selected descriptors. The 
residual of the ASNN predicted values are plotted against their experimental values shown in 
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Figure 2. The propagation of residuals on both sides of zero indicates that no systematic error 
exists in the development of ASNN. The predicted values have an average absolute deviation 
(%AAD) of 0.48% for training set and 0.38 % for testing set compared with experimental values. 
Therefore this QSPR relationship can be used for the prediction of refractive index values with a 
high degree of confidence. 
 

Table 3:  Predicted refractive index values using ASNN and PNN   for tested compounds that have not been 
included in training set. 

 

S.No Compound Name Experimental Predicted 
by ASNN 

Residual Predicted by 
PNN 

Residual 

1 Propylbromide 1.43 1.45 -0.02 1.45 -0.02 

2 2,2 Dimethyl butane 1.37 1.38 -0.01 1.37 0 

3 2-MethylPentane 1.37 1.38 -0.01 1.38 -0.01 

4 Nonylcyclopentane 1.45 1.46 -0.01 1.48 -0.03 

5 4-Ethyl Heptane 1.41 1.41 0 1.41 0 

6 Octane 1.4 1.4 0 1.4 0 

7 2,7-Dimethyl octane 1.41 1.41 0 1.41 0 

8 2,4-Dimethyl Nonane 1.42 1.42 0 1.42 0 

9 Tetradecane 1.45 1.43 0.02 1.43 0.02 

10 Diethyl ether 1.35 1.36 -0.01 1.36 -0.01 

11 Ethyl pentyl ether 1.39 1.39 0 1.4 -0.01 

12 Ethyl isobutyl ether 1.37 1.38 -0.01 1.38 -0.01 

13 Methyl acetate 1.36 1.39 -0.03 1.39 -0.03 

14 2-Methylpropyl acetate 1.4 1.4 0 1.4 0 

15 Propyl acetate 1.38 1.39 -0.01 1.39 -0.01 

16 2-Fluoroethanol 1.37 1.37 0 1.34 0.03 

17 1-Decanol 1.44 1.44 0 1.43 0.01 

18 1-Nonanol 1.43 1.43 0 1.43 0 

19 Propanoic acid 1.39 1.39 0 1.39 0 

20 n-Butylbenzene 1.49 1.49 0 1.5 -0.01 

21 Dibutylamine 1.42 1.43 -0.01 1.44 -0.02 

22 Triisobutylamine 1.43 1.43 0 1.43 0 

23 2-Hexanone 1.4 1.4 0 1.4 0 

24 2-Pentanone 1.39 1.39 0 1.39 0 

25 Cyclo pentanone 1.44 1.45 -0.01 1.45 -0.01 

26 Methyl ethyl ketone 1.38 1.38 0 1.38 0 

27 Acetophenone 1.53 1.53 0 1.52 0.01 

28 Methyl isobutyl ketone 1.4 1.4 0 1.4 0 

 
The data set used in ASNN is also applied to Polynomial Neural Network (PNN) for 

comparative study. The PNN represents a new challenge for development of physicochemical 
data prediction methods. It should be noted that, predictive ability of the PNN model is 
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2
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+0.00127 *(C-001
2
) +0.171 *AMW *Mp -0.00254 * (C-001) *AMW 

-0.0824 *nX 

 

 

enhanced by varying number of variables in the polynomials. Numbers of iterations are 
increased until convergence is achieved. Degree of polynomial represents number of terms in 
the polynomial equation that will be used in model selection. The present work involves second 
order polynomial equation which includes 22 square and cross terms of input descriptors 
produce the best result. This result is achieved in 50 iterations. The polynomial equation for the 
best model had the following formula: 
 
Refractive   
Index (n) = 
 
 

 
 
 
 
Table 1 & 3 gives the calculated refractive index values for training and test set using 

the best fitted polynomial equation. Figure 3 shows experimental refractive index values versus 
calculated for both Training and Test set. The statistical performance of PNN analysis is included 
in Table 4. Squared correlation coefficient of 0.91 for training and 0.901 for testing confirms the 
predictive ability of PNN but accuracy is less compared to ASNN predicted model. 
 

Table 4: Statistical Comparison of QSPR models obtained using ASNN and PNN. 
 

Data set ASNN PNN 

R
2
 q

2
 RMSE R

2
 q

2
 RMSE 

Training 0.962 0.961 0.01 0.910 
0.901 

0.901 
0.898 

0.0125 
0.013 Testing 0.9527 0.939 0.0098 

 

 

R 2 (Training) = 0.9628 R 2 (Testing)    = 0.9527 
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Fig 1: Scatter plot of Experimental versus Predicted Refractive indices for Training and Testing Set (ASNN) 
 

 

 

Fig 2: Experimental versus residual values for ASNN predicted values 
 

 

 

Fig 3: Scatter plot of Experimental versus Predicted Refractive indices for Training and Testing Set (PNN) 

 
Interpretation of descriptors 
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It is well accepted that refractive index (n) is governed by London dispersion forces in 
organic compounds.  It should be noted that Molecular interaction force is directly proportional 
to polarizability [25]. Therefore descriptors Mp and Sp directly encode information related to 
molecular polarizability. The atom-centered fragment descriptor (C-001) is used to differentiate 
the isomers within same group of compounds. The descriptor nNr relates a polar interaction 
among the molecules in the bulk liquid. It is well known that molecular polarizability is directly 
proportional to number of electrons in the molecule. When the size (number of electrons) of 
the molecule increases, intermolecular interaction is stronger, therefore the higher the 
refractive index will be. Compounds containing more polarizable groups (Halogen atoms) will 
normally have higher refractive indices than compounds containing less polarizable groups 
(oxygen atoms). Hence the descriptor nX represents a measure of molecular polarizability. The 
descriptor RBF represents Molecular flexibility which increases with the number of flexible 
bonds in the molecule and the importance associated with flexible bond might be owing to the 
fact that they play an important role to identify different groups of organic compounds with 
similar property. This descriptor is also used to differentiate cyclic compounds with other type 
of compounds. The descriptor X2Av is used for heteroatom differentiation. It can be concluded 
that the descriptors in the present QSPR model has definite chemical meaning and these can 
account the structural features that affect on the refractive index of the organic compounds. 
Since density of most organic compounds is roughly proportional to refractive index [26], 
therefore, descriptor Average molecular weight (AMW) indirectly related to refractive index of 
organic compounds. 

 
CONCLUSION 

 
The results reported in this paper clearly show the prediction of refractive indices of 

wider variety of organic compounds with better statistics than other models reported in 
literature. Eight significant descriptors are selected by employing Unsupervised forward 
selection procedure. By using ASNN, a statistically significant QSPR model with the squared 
correlation co-efficient values for training and for testing are 0.962 and 0.9527 respectively. On 
the same data set, another QSPR model is developed on PNN which predict  refractive index 
values accurately  with Squared correlation co-efficient R2 = 0.9101 for training and R2 = 0.901 
for test set.  The obtained results in this paper suggest that the ASNN predicts refractive index 
of organic compounds very well compared with PNN. The QSPR models developed in this study 
can provide a useful tool to predict the refractive index of new compounds. All descriptors are 
solely derived from the chemical structure of compounds. The descriptors involved in the 
present study reveal several interaction mechanisms are important for the refractive index of 
organic compounds. Specifically, they include the polarizability of the molecule and molecular 
size dependent effects in the molecules. 
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